QAOA MaxSetPacking#
Problem description#
Given a universe \([n]\) and \(m\) subsets \(\mathcal S = (S_j)^m_{j=1}\) , \(S_j \subset [n]\), find the maximum cardinality subcollection \(\mathcal S' \subset \mathcal S\) of pairwise disjoint subsets. Following the work of Hadfield et al., the MaxSetPacking problem is solved by solving the MaxIndepSet problem on the constraint graph \(G=(V,E)\) where vertices correspond to subsets in \(\mathcal S\) and edges correspond to pairs of intersecting subsets.
MaxSetPacking problem#
- max_set_packing_problem(sets)[source]#
Creates a QAOA problem instance with appropriate phase separator, mixer, and classical cost function.
- Parameters:
- setslist[set]
The sets for the problem instance.
- Returns:
- QAOAProblem
A QAOA problem instance for MaxSetPacking for given
sets
.
Example implementation#
from qrisp import QuantumVariable
from qrisp.qaoa import QAOAProblem, RZ_mixer, create_max_indep_set_cl_cost_function, create_max_indep_set_mixer, max_indep_set_init_function
import networkx as nx
from itertools import combinations
sets = [{0,7,1},{6,5},{2,3},{5,4},{8,7,0},{1}]
def non_empty_intersection(sets):
return [(i, j) for (i, s1), (j, s2) in combinations(enumerate(sets), 2) if s1.intersection(s2)]
# create constraint graph
G = nx.Graph()
G.add_nodes_from(range(len(sets)))
G.add_edges_from(non_empty_intersection(sets))
qarg = QuantumVariable(G.number_of_nodes())
qaoa_max_indep_set = QAOAProblem(cost_operator=RZ_mixer,
mixer=create_max_indep_set_mixer(G),
cl_cost_function=create_max_indep_set_cl_cost_function(G),
init_function=max_indep_set_init_function)
results = qaoa_max_indep_set.run(qarg=qarg, depth=5)
That’s it! In the following, we print the 5 most likely solutions together with their cost values.
cl_cost = create_max_indep_set_cl_cost_function(G)
print("5 most likely solutions")
max_five = sorted(results.items(), key=lambda item: item[1], reverse=True)[:5]
for res, prob in max_five:
print([sets[index] for index, value in enumerate(res) if value == '1'], prob, cl_cost({res : 1}))