QAOA MaxSetPacking#
Problem description#
Given a universe
MaxSetPacking problem#
- max_set_packing_problem(sets)[source]#
Creates a QAOA problem instance with appropriate phase separator, mixer, and classical cost function.
- Parameters:
- setslist[set]
The sets for the problem instance.
- Returns:
- QAOAProblem
A QAOA problem instance for MaxSetPacking for given
sets
.
Example implementation#
from qrisp import QuantumVariable
from qrisp.qaoa import QAOAProblem, RZ_mixer, create_max_indep_set_cl_cost_function, create_max_indep_set_mixer, max_indep_set_init_function
import networkx as nx
from itertools import combinations
sets = [{0,7,1},{6,5},{2,3},{5,4},{8,7,0},{1}]
def non_empty_intersection(sets):
return [(i, j) for (i, s1), (j, s2) in combinations(enumerate(sets), 2) if s1.intersection(s2)]
# create constraint graph
G = nx.Graph()
G.add_nodes_from(range(len(sets)))
G.add_edges_from(non_empty_intersection(sets))
qarg = QuantumVariable(G.number_of_nodes())
qaoa_max_indep_set = QAOAProblem(cost_operator=RZ_mixer,
mixer=create_max_indep_set_mixer(G),
cl_cost_function=create_max_indep_set_cl_cost_function(G),
init_function=max_indep_set_init_function)
results = qaoa_max_indep_set.run(qarg=qarg, depth=5)
That’s it! In the following, we print the 5 most likely solutions together with their cost values.
cl_cost = create_max_indep_set_cl_cost_function(G)
print("5 most likely solutions")
max_five = sorted(results.items(), key=lambda item: item[1], reverse=True)[:5]
for res, prob in max_five:
print([sets[index] for index, value in enumerate(res) if value == '1'], prob, cl_cost({res : 1}))