QAOA E3Lin2#
Problem description#
Given a set of
Here, the equations are represented by a list of clauses, for example [0,1,3,1]
corresponds to
Cost operator#
- create_e3lin2_cost_operator(clauses)[source]#
Creates the cost operator for an instance of the E3Lin2 problem following Hadfield et al. The cost operator is given by
where- Parameters:
- clauseslist[list[int]]
The clasues defining the problem.
- Returns:
- function
A Python function receiving a
QuantumVariable
and real parameter . This function performs the application of the mixer associated to the graph .
Classical cost function#
- create_e3lin2_cl_cost_function(clauses)[source]#
Creates the cost operator for an instance of the E3Lin2 problem.
- Parameters:
- clauseslist[list[int]]
The clasues defining the problem.
- Returns:
- cl_cost_functionfunction
The classical cost function for the problem instance, which takes a dictionary of measurement results as input.
E3Lin2 problem#
- e3lin2_problem(clauses)[source]#
Creates a QAOA problem instance with appropriate phase separator, mixer, and classical cost function.
- Parameters:
- clauseslist[list[int]]
The clauses of the E3Lin2 problem instance.
- Returns:
- QAOAProblem
A QAOA problem instance for E3Lin2 for given
clauses
.
Example implementation#
from qrisp import QuantumVariable
from qrisp.qaoa import QAOAProblem, RX_mixer, create_e3lin2_cl_cost_function, create_e3lin2_cost_operator
clauses = [[0,1,2,1],[1,2,3,0],[0,1,4,0],[0,2,4,1],[2,4,5,1],[1,3,5,1],[2,3,4,0]]
num_variables = 6
qarg = QuantumVariable(num_variables)
qaoa_e3lin2 = QAOAProblem(cost_operator=create_e3lin2_cost_operator(clauses),
mixer=RX_mixer,
cl_cost_function=create_e3lin2_cl_cost_function(clauses))
results = qaoa_e3lin2.run(qarg=qarg, depth=5)
That’s it! Feel free to experiment with the init_type='tqa'
option in the .run
method for improved performance.
In the following, we print the 5 most likely solutions together with their cost values.
cl_cost = create_e3lin2_cl_cost_function(clauses)
print("5 most likely solutions")
max_five = sorted(results.items(), key=lambda item: item[1], reverse=True)[:5]
for res, prob in max_five:
print(res, prob, cl_cost({res : 1}))