FermionicOperator#

class FermionicOperator(terms_dict={})[source]#

This class provides an efficient implementation of ladder term operators, i.e., operators of the form

O=jαjOj

where each term Oj is a product of fermionic raising ai and lowering ai operators acting on the i th fermionic mode.

The ladder operators satisfy the commutation relations

{ai,aj}=aiaj+ajai=δij{ai,aj}={ai,aj}=0

Examples

A ladder term operator can be specified conveniently in terms of a (lowering, i.e., annihilation), c (raising, i.e., creation) operators:

from qrisp.operators.fermionic import a, c

O = a(2)*c(1)+a(3)*c(2)
O

Yields a2c1+a3c2.

Methods#

FermionicOperator.dagger()

Returns the daggered/adjoint version of self.

FermionicOperator.from_openfermion(...)

Imports a FermionicOperator from OpenFermion.

FermionicOperator.from_pyscf(...)

FermionicOperator.get_measurement(qarg[, ...])

This method returns the expected value of a Hamiltonian for the state of a quantum argument.

FermionicOperator.ground_state_energy()

Calculates the ground state energy (i.e., the minimum eigenvalue) of the operator classically.

FermionicOperator.hermitize()

Returns the hermitized version of self.

FermionicOperator.reduce([assume_hermitian])

Applies the fermionic anticommutation laws to bring the operator into a standard form.

FermionicOperator.to_qubit_operator([...])

Transforms the FermionicOperator to a QubitOperator.

FermionicOperator.trotterization([...])

Returns a function for performing Hamiltonian simulation, i.e., approximately implementing the unitary operator U(t)=eitH via Trotterization.