"""
\********************************************************************************
* Copyright (c) 2024 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************/
"""
import numpy as np
from qrisp.operators import Hamiltonian
from qrisp.operators.fermionic.fermionic_term import FermionicTerm
from qrisp.operators.hamiltonian_tools import group_up_terms
from qrisp import merge, IterationEnvironment, conjugate
from qrisp.operators.qubit import QubitOperator
import sympy as sp
threshold = 1e-9
#
# FermionicOperator
#
[docs]
class FermionicOperator(Hamiltonian):
r"""
This class provides an efficient implementation of ladder term operators, i.e.,
operators of the form
.. math::
O=\sum\limits_{j}\alpha_jO_j
where each term $O_j$ is a product of fermionic raising $a_i^{\dagger}$ and lowering $a_i$ operators acting on the $i$ th fermionic mode.
The ladder operators satisfy the commutation relations
.. math::
\{a_i,a_j^{\dagger}\} &= a_ia_j^{\dagger}+a_j^{\dagger}a_i = \delta_{ij}\\
\{a_i^{\dagger},a_j^{\dagger}\} &= \{a_i,a_j\} = 0
Examples
--------
A ladder term operator can be specified conveniently in terms of ``a`` (lowering, i.e., annihilation), ``c`` (raising, i.e., creation) operators:
::
from qrisp.operators.fermionic import a, c
O = a(2)*c(1)+a(3)*c(2)
O
Yields $a_2c_1+a_3c_2$.
"""
def __init__(self, terms_dict={}):
self.terms_dict = dict(terms_dict)
[docs]
def reduce(self, assume_hermitian = False):
"""
Applies the fermionic anticommutation laws to bring the operator into
a standard form. This can reduce the amount of terms because several
terms might be the permuted version of each other and therefore their
coefficients add up.
This function can reduce the amount of terms even further if the user
can guarantee that the operator will be hermitized. In this case more
identifications can be made.
Parameters
----------
assume_hermitian : bool, optional
If set to True the function will assume that the result will be
hermitized. The default is False.
Returns
-------
FermionicOperator
The reduced FermionicOperator.
Examples
--------
We create a FermionicOperator with redundant term definitions:
::
from qrisp.operators import *
O = a(0)*a(1) - a(1)*a(0)
print(O.reduce())
# Yields: 2*a0*a1
To demonstrate the ``assume_hermitian`` feature, we create a FermionicOperator
that has redundant terms, if hermitized.
>>> O = a(0)*a(1) + c(1)*c(0)
>>> reduced_O = O.reduce(assume_hermitian = True)
>>> print(reduced_O)
2*a0*a1
Hermitizing gives the original operator.
>>> print(reduced_O.hermitize())
1.0*a0*a1 + 1.0*c1*c0
"""
# This function performs some non trivial logic.
# The problem here is that each fermionic term can
# be reshaped into several different forms and still express
# the same operator.
# For instance, the operator can be arbitrarily reordered
# if the permutation sign is take care of and no creators/annihilators
# with the same index are swapped.
# Furthermore the Hamiltonian must be Hermitian, so each
# term must be equivalent to is Hermitian conjugate.
# This function implements a storage system, that combines
# the coefficients of differing terms representing the same operator
# into a single term.
# This dictionary will contain the new terms, where redundancies
# are taken care of.
new_terms_dict = {}
for term, coeff in self.terms_dict.items():
# We only store the sorted version of each term.
# Sorting here means permuting the creators/annihilators
# while considering the sign of the permutation applied by the sort.
# The sort is performed in a stable manner, so terms like a(0)*c(0)
# don't get permuted (this would be a non-trivial anti-commutator).
sorted_term, flip_sign = term.sort()
if sorted_term not in new_terms_dict and assume_hermitian:
# If the sorted term is not in the terms dict, the sorted version
# of the daggering might be.
daggered_sorted_term, daggered_flip_sign = term.dagger().sort()
if daggered_sorted_term in new_terms_dict:
sorted_term = daggered_sorted_term
flip_sign = daggered_flip_sign
# Compute the new coefficient.
new_terms_dict[sorted_term] = flip_sign*coeff + new_terms_dict.get(sorted_term, 0)
return FermionicOperator(new_terms_dict)
def len(self):
return len(self.terms_dict)
#
# Printing
#
def _repr_latex_(self):
# Convert the sympy expression to LaTeX and return it
expr = self.to_expr()
return f"${sp.latex(expr)}$"
def __str__(self):
# Convert the sympy expression to a string and return it
expr = self.to_expr()
return str(expr)
def to_expr(self):
"""
Returns a SymPy expression representing the operator.
Returns
-------
expr : sympy.expr
A SymPy expression representing the operator.
"""
expr = 0
for ladder_term,coeff in self.terms_dict.items():
expr += coeff*ladder_term.to_expr()
return expr
#
# Arithmetic
#
[docs]
def dagger(self):
r"""
Returns the daggered/adjoint version of self.
Returns
-------
FermionicOperator
The Operator $O^\dagger$.
Examples
--------
We create a FermionicOperator and dagger it:
::
from qrisp.operators import *
O = a(0)*c(1)*a(2) + a(3)
print(O.dagger())
# Yields: c2*a1*c0 + c3
"""
terms_dict = {}
for term, coeff in self.terms_dict.items():
terms_dict[term.dagger()] = np.conj(coeff)
return FermionicOperator(terms_dict)
[docs]
def hermitize(self):
r"""
Returns the hermitized version of self.
Returns
-------
FermionicOperator
The Operator $(O + O^\dagger)/2$.
Examples
--------
We create a FermionicOperator and hermitize it:
::
from qrisp.operators import *
O = a(0)*c(1)*a(2) + a(3)
print(O.hermitize())
# Yields: 0.5*a0*c1*a2 + 0.5*a3 + 0.5*c2*a1*c0 + 0.5*c3
"""
return 0.5*(self + self.dagger())
def __eq__(self, other):
reduced_self = self.reduce()
reduced_other = other.reduce()
if len(reduced_self.terms_dict) != len(reduced_other.terms_dict):
return False
for term, coeff in reduced_self.terms_dict.items():
if not term in other.terms_dict:
daggered_sorted_term, flip_sign = term.dagger().sort()
if daggered_sorted_term not in reduced_other.terms_dict:
return False
elif reduced_self.terms_dict[term] != flip_sign*reduced_other.terms_dict[daggered_sorted_term]:
return False
continue
if reduced_self.terms_dict[term] != reduced_other.terms_dict[term]:
return False
return True
def __neg__(self):
return -1*self
#def __pow__(self, e):
# if self.len()==1:
# if isinstance(e, int) and e>=0:
# if e%2==0:
# return FermionicOperator({FermionicTerm():1})
# else:
# return self
# else:
# raise TypeError("Unsupported operand type(s) for ** or pow(): "+str(type(self))+" and "+str(type(e)))
# else:
# raise TypeError("Unsupported operand type(s) for ** or pow(): "+str(type(self))+" and "+str(type(e)))
def __add__(self,other):
"""
Returns the sum of the operator self and other.
Parameters
----------
other : int, float, complex or FermionicOperator
A scalar or a FermionicOperator to add to the operator self.
Returns
-------
result : FermionicOperator
The sum of the operator self and other.
"""
if isinstance(other,(int,float,complex)):
other = FermionicOperator({FermionicTerm():other})
if not isinstance(other,FermionicOperator):
raise TypeError("Cannot add FermionicOperator and "+str(type(other)))
res_terms_dict = {}
for ladder_term,coeff in self.terms_dict.items():
res_terms_dict[ladder_term] = res_terms_dict.get(ladder_term,0)+coeff
if abs(res_terms_dict[ladder_term])<threshold:
del res_terms_dict[ladder_term]
for ladder_term,coeff in other.terms_dict.items():
res_terms_dict[ladder_term] = res_terms_dict.get(ladder_term,0)+coeff
if abs(res_terms_dict[ladder_term])<threshold:
del res_terms_dict[ladder_term]
result = FermionicOperator(res_terms_dict)
return result
def __sub__(self,other):
"""
Returns the difference of the operator self and other.
Parameters
----------
other : int, float, complex or FermionicOperator
A scalar or a FermionicOperator to substract from the operator self.
Returns
-------
result : FermionicOperator
The difference of the operator self and other.
"""
if isinstance(other,(int,float,complex)):
other = FermionicOperator({FermionicTerm():other})
if not isinstance(other,FermionicOperator):
raise TypeError("Cannot substract FermionicOperator and "+str(type(other)))
res_terms_dict = {}
for ladder_term,coeff in self.terms_dict.items():
res_terms_dict[ladder_term] = res_terms_dict.get(ladder_term,0)+coeff
if abs(res_terms_dict[ladder_term])<threshold:
del res_terms_dict[ladder_term]
for ladder_term,coeff in other.terms_dict.items():
res_terms_dict[ladder_term] = res_terms_dict.get(ladder_term,0)-coeff
if abs(res_terms_dict[ladder_term])<threshold:
del res_terms_dict[ladder_term]
result = FermionicOperator(res_terms_dict)
return result
def __rsub__(self,other):
"""
Returns the difference of the operator other and self.
Parameters
----------
other : int, float, complex or FermionicOperator
A scalar or a FermionicOperator to substract from the operator self from.
Returns
-------
result : FermionicOperator
The difference of the operator other and self.
"""
if isinstance(other,(int,float,complex)):
other = FermionicOperator({FermionicTerm():other})
if not isinstance(other,FermionicOperator):
raise TypeError("Cannot substract FermionicOperator and "+str(type(other)))
res_terms_dict = {}
for ladder_term,coeff in self.terms_dict.items():
res_terms_dict[ladder_term] = res_terms_dict.get(ladder_term,0)-coeff
if abs(res_terms_dict[ladder_term])<threshold:
del res_terms_dict[ladder_term]
for ladder_term,coeff in other.terms_dict.items():
res_terms_dict[ladder_term] = res_terms_dict.get(ladder_term,0)+coeff
if abs(res_terms_dict[ladder_term])<threshold:
del res_terms_dict[ladder_term]
result = FermionicOperator(res_terms_dict)
return result
def __mul__(self,other):
"""
Returns the product of the operator self and other.
Parameters
----------
other : int, float, complex or FermionicOperator
A scalar or a FermionicOperator to multiply with the operator self.
Returns
-------
result : FermionicOperator
The product of the operator self and other.
"""
if isinstance(other,(int,float,complex)):
other = FermionicOperator({FermionicTerm():other})
if not isinstance(other,FermionicOperator):
raise TypeError("Cannot multipliy FermionicOperator and "+str(type(other)))
res_terms_dict = {}
for ladder_term1, coeff1 in self.terms_dict.items():
for ladder_term2, coeff2 in other.terms_dict.items():
curr_ladder_term = ladder_term1*ladder_term2
res_terms_dict[curr_ladder_term] = res_terms_dict.get(curr_ladder_term,0) + coeff1*coeff2
result = FermionicOperator(res_terms_dict)
return result
__radd__ = __add__
__rmul__ = __mul__
#
# Inplace arithmetic
#
def __iadd__(self,other):
"""
Adds other to the operator self.
Parameters
----------
other : int, float, complex or FermionicOperator
A scalar or a FermionicOperator to add to the operator self.
"""
if isinstance(other,(int,float,complex)):
self.terms_dict[FermionicTerm()] = self.terms_dict.get(FermionicTerm(),0)+other
return self
if not isinstance(other,FermionicOperator):
raise TypeError("Cannot add FermionicOperator and "+str(type(other)))
for ladder_term,coeff in other.terms_dict.items():
self.terms_dict[ladder_term] = self.terms_dict.get(ladder_term,0)+coeff
if abs(self.terms_dict[ladder_term])<threshold:
del self.terms_dict[ladder_term]
self.terms_dict = FermionicOperator(self.terms_dict).terms_dict
return self
def __isub__(self,other):
"""
Substracts other from the operator self.
Parameters
----------
other : int, float, complex or FermionicOperator
A scalar or a FermionicOperator to substract from the operator self.
"""
if isinstance(other,(int,float,complex)):
self.terms_dict[FermionicTerm()] = self.terms_dict.get(FermionicTerm(),0)-other
return self
if not isinstance(other,FermionicOperator):
raise TypeError("Cannot add FermionicOperator and "+str(type(other)))
for ladder_term,coeff in other.terms_dict.items():
self.terms_dict[ladder_term] = self.terms_dict.get(ladder_term,0)-coeff
if abs(self.terms_dict[ladder_term])<threshold:
del self.terms_dict[ladder_term]
return self
def __imul__(self,other):
"""
Multiplys other to the operator self.
Parameters
----------
other : int, float, complex or FermionicOperator
A scalar or a FermionicOperator to multiply with the operator self.
"""
if isinstance(other,(int,float,complex)):
other = FermionicOperator({FermionicTerm():other})
if not isinstance(other,FermionicOperator):
raise TypeError("Cannot multipliy FermionicOperator and "+str(type(other)))
res_terms_dict = {}
for ladder_term1, coeff1 in self.terms_dict.items():
for ladder_term2, coeff2 in other.terms_dict.items():
curr_ladder_term = ladder_term1*ladder_term2
res_terms_dict[curr_ladder_term] = res_terms_dict.get(curr_ladder_term,0) + coeff1*coeff2
self.terms_dict = res_terms_dict
#
# Miscellaneous
#
def apply_threshold(self,threshold):
"""
Removes all ladder_term terms with coefficient absolute value below the specified threshold.
Parameters
----------
threshold : float
The threshold for the coefficients of the ladder_term terms.
"""
delete_list = []
for ladder_term,coeff in self.terms_dict.items():
if abs(coeff)<threshold:
delete_list.append(ladder_term)
for ladder_term in delete_list:
del self.terms_dict[ladder_term]
def to_sparse_matrix(self, mapping_type = "jordan_wigner"):
"""
Returns a matrix representing the operator.
Returns
-------
M : scipy.sparse.csr_matrix
A sparse matrix representing the operator.
mapping_type : string, optional
How to embedd the fermionic terms into a QubitOperator. Currently
only ``jordan_wigner`` is supported.
"""
return self.to_qubit_operator(mapping_type=mapping_type).to_sparse_matrix()
[docs]
def ground_state_energy(self):
"""
Calculates the ground state energy (i.e., the minimum eigenvalue) of the operator classically.
Returns
-------
E : float
The ground state energy.
"""
return self.to_qubit_operator().ground_state_energy()
[docs]
@classmethod
def from_pyscf(self, pyscf_molecular_data):
"""
.. _pscf_loading:
Loads the data of a `PySCF molecule <https://pyscf.org/user/gto.html>`_
into a FermionicOperator.
Parameters
----------
pyscf_molecular_data : pyscf.gto.mole.Mole
The molecule to load.
Returns
-------
molecule_hamiltonian : FermionicOperator
The molecule as an operator.
Examples
--------
We load the Hydrogen molecule and perform a hamiltonian simulation:
>>> from pyscf import gto
>>> mol = gto.M(atom = '''H 0 0 0; H 0 0 0.74''', basis = 'sto-3g')
>>> H = FermionicOperator.from_pyscf(mol)
>>> print(H)
-0.181210462015197*a0*a1*c2*c3 + 0.181210462015197*a0*c1*c2*a3
- 1.25330978664598*c0*a0 + 0.674755926814448*c0*a0*c1*a1
+ 0.482500939335616*c0*a0*c2*a2 + 0.663711401350814*c0*a0*c3*a3
+ 0.181210462015197*c0*a1*a2*c3 - 0.181210462015197*c0*c1*a2*a3
- 1.25330978664598*c1*a1 + 0.663711401350814*c1*a1*c2*a2
+ 0.482500939335616*c1*a1*c3*a3 - 0.475068848772178*c2*a2
+ 0.697651504490463*c2*a2*c3*a3 - 0.475068848772178*c3*a3
Create a :ref:`QuantumVariable` and initialize two electrons in the upper
orbitals.
>>> from qrisp import QuantumVariable
>>> electron_state = QuantumVariable(4)
>>> electron_state[:] = "0011"
Simulate for $t = 100$ `Angstrom seconds <https://en.wikipedia.org/wiki/Angstrom>`_.
>>> U = H.trotterization()
>>> U(electron_state, t = 100, steps = 20)
>>> print(electron_state)
{'0011': 0.75331, '1100': 0.24669}
We see that the electrons decayed to one of the lower levels. How cool is that?!
"""
from qrisp.algorithms.vqe.problems.electronic_structure import create_electronic_hamiltonian
return create_electronic_hamiltonian(pyscf_molecular_data)
#
# Transformations
#
[docs]
def to_qubit_operator(self, mapping_type='jordan_wigner'):
"""
Transforms the FermionicOperator to a :ref:`QubitOperator`.
Parameters
----------
mapping : str, optional
The mapping to transform the Hamiltonian. Available is ``jordan_wigner``.
The default is ``jordan_wigner``.
Returns
-------
O : :ref:`QubitOperator`
The resulting QubitOperator.
Examples
--------
We map a singular fermionic ladder operator to a QubitOperator to see
the Jordan-Wigner embedding.
>>> from qrisp.operators import a
>>> O = a(4)
>>> print(O.to_qubit_operator())
Z_0*Z_1*Z_2*Z_3*A_4
"""
if mapping_type=="jordan_wigner":
res = QubitOperator({})
for term, coeff in self.terms_dict.items():
res += coeff*term.to_qubit_term(mapping_type="jordan_wigner")
return res
else:
raise Exception(f"Don't know fermionic mapping {mapping_type}.")
#
# Measurement
#
[docs]
def get_measurement(
self,
qarg,
mapping_type="jordan_wigner",
**measurement_kwargs
):
r"""
This method returns the expected value of a Hamiltonian for the state
of a quantum argument. Note that this method measures the **hermitized**
version of the operator:
.. math::
H = (O + O^\dagger)/2
Parameters
----------
qarg : QuantumVariable or list[Qubit]
The quantum argument to evaluate the Hamiltonian on.
mapping_type : str
The strategy on how to map the FermionicOperator to a QubitOperator. Default is ``jordan_wigner``
measurement_kwargs : dict
The keyword arguments of :meth:`QubitOperator.get_measurement`.
Raises
------
Exception
If the containing QuantumSession is in a quantum environment, it is not
possible to execute measurements.
Returns
-------
float
The expected value of the Hamiltonian.
Examples
--------
We create a FermionicOperator and perform a measurement.
>>> from qrisp.operators import *
>>> from qrisp import QuantumVariable
>>> qv = QuantumVariable(4)
>>> O = a(0)*a(1) + a(2)*c(1) + c(2)*a(3)
>>> print(O.get_measurement(qv))
-0.007968127490039834
"""
qubit_operator = self.to_qubit_operator(mapping_type)
return qubit_operator.get_measurement(qarg, **measurement_kwargs)
#
# Trotterization
#
[docs]
def trotterization(self, forward_evolution = True):
r"""
Returns a function for performing Hamiltonian simulation, i.e., approximately implementing the unitary operator $U(t) = e^{-itH}$ via Trotterization.
Note that this method will always simulate the **hermitized** operator, i.e.
.. math::
H = (O + O^\dagger)/2
Parameters
----------
forward_evolution, bool, optional
If set to False $U(t)^\dagger = e^{itH}$ will be executed (usefull for quantum phase estimation). The default is True.
Returns
-------
U : function
A Python function that implements the first order Suzuki-Trotter formula.
Given a Hamiltonian $H=H_1+\dotsb +H_m$ the unitary evolution $e^{-itH}$ is
approximated by
.. math::
e^{-itH}\approx U(t,N)=\left(e^{-iH_1t/N}\dotsb e^{-iH_mt/N}\right)^N
This function recieves the following arguments:
* qarg : QuantumVariable or QuantumArray
The quantum argument.
* t : float, optional
The evolution time $t$. The default is 1.
* steps : int, optional
The number of Trotter steps $N$. The default is 1.
* iter : int, optional
The number of iterations the unitary $U(t,N)$ is applied. The default is 1.
Examples
--------
We simulate a simple FermionicOperator.
>>> from sympy import Symbol
>>> from qrisp.operators import a,c
>>> from qrisp import QuantumVariable
>>> O = a(0)*a(1) + a(2)
>>> U = O.trotterization()
>>> qv = QuantumVariable(3)
>>> t = Symbol("t")
>>> U(qv, t = t)
>>> print(qv.qs)
QuantumCircuit:
---------------
┌───┐ ┌───┐┌────────────┐┌───┐ ┌───┐
qv.0: ────■─┤ X ├─────────────┤ X ├┤ Rz(-0.5*t) ├┤ X ├─────┤ X ├─■────
│ └─┬─┘ ┌───┐ └─┬─┘├────────────┤└─┬─┘┌───┐└─┬─┘ │
qv.1: ─■──┼───■──────┤ H ├──────■──┤ Rz(-0.5*t) ├──■──┤ H ├──■───┼──■─
│ │ ┌───┐┌───┴───┴───┐┌───┐└────────────┘ └───┘ │ │
qv.2: ─■──■─┤ H ├┤ Rz(1.0*t) ├┤ H ├──────────────────────────────■──■─
└───┘└───────────┘└───┘
Live QuantumVariables:
----------------------
QuantumVariable qv
Execute a simulation:
>>> print(qv.get_measurement(subs_dic = {t : 0.5}))
{'000': 0.9242, '001': 0.06026, '110': 0.01459, '111': 0.00095}
"""
reduced_H = self.reduce(assume_hermitian=True)
groups = reduced_H.group_up(denominator = lambda a,b : not a.intersect(b))
def trotter_step(qarg, t, steps):
for group in groups:
permutation = []
terms = group.terms_dict.keys()
for term in terms:
for ladder in term.ladder_list:
if ladder[0] not in permutation:
permutation.append(ladder[0])
for k in range(len(qarg)):
if k not in permutation:
permutation.append(k)
permutation = permutation[::-1]
with conjugate(apply_fermionic_swap)(qarg, permutation) as new_qarg:
for ferm_term in terms:
coeff = reduced_H.terms_dict[ferm_term]
pauli_hamiltonian = ferm_term.fermionic_swap(permutation).to_qubit_term()
pauli_term = list(pauli_hamiltonian.terms_dict.keys())[0]
pauli_term.simulate(-coeff*t/steps*pauli_hamiltonian.terms_dict[pauli_term]*(-1)**int(forward_evolution), new_qarg)
def U(qarg, t=1, steps=1, iter=1):
merge([qarg])
with IterationEnvironment(qarg.qs, iter*steps):
trotter_step(qarg, t, steps)
return U
def group_up(self, denominator):
term_groups = group_up_terms(self, denominator)
if len(term_groups) == 0:
return [self]
groups = []
for term_group in term_groups:
O = FermionicOperator({term : self.terms_dict[term] for term in term_group})
groups.append(O)
return groups
[docs]
@classmethod
def from_openfermion(cls, of_fermionic_hamiltonian):
"""
Imports a FermionicOperator from `OpenFermion <https://quantumai.google/reference/python/openfermion/ops/FermionOperator>`_.
Parameters
----------
of_fermionic_operator : openfermion.FermionOperator
The OpenFermion operator.
Returns
-------
FermionicOperator
The equivlanet Qrisp operator.
Examples
--------
We load the $H_2$ molecule from PySCF via OpenFermion and import it into Qrisp:
::
import openfermion as of
import openfermionpyscf as ofpyscf
# Set molecule parameters
geometry = [("H", (0.0, 0.0, 0.0)), ("H", (0.0, 0.0, 0.8))]
basis = "sto-3g"
multiplicity = 1
charge = 0
# Perform electronic structure calculations and
# obtain Hamiltonian as an InteractionOperator
hamiltonian = ofpyscf.generate_molecular_hamiltonian(
geometry, basis, multiplicity, charge
)
# Convert to a FermionOperator
hamiltonian_ferm_op = of.get_fermion_operator(hamiltonian)
from qrisp.operators import FermionicOperator
H = FermionicOperator.from_openfermion(hamiltonian_ferm_op)
"""
terms_dict = {}
for term, coeff in of_fermionic_hamiltonian.terms.items():
ladder_list = []
for tup in term[::-1]:
ladder_list.append((tup[0], bool(tup[1])))
terms_dict[FermionicTerm(ladder_list)] = coeff
return FermionicOperator(terms_dict)
def apply_fermionic_swap(qv, permutation):
from qrisp import cz
qb_list = list(qv)
swaps = get_swaps_for_permutation(permutation)
for swap in swaps[::-1]:
cz(qb_list[swap[0]], qb_list[swap[1]])
qb_list[swap[0]], qb_list[swap[1]] = qb_list[swap[1]], qb_list[swap[0]]
return qb_list
def get_swaps_for_permutation(permutation):
swaps = []
permutation = list(permutation)
for i in range(len(permutation)):
j = permutation.index(i)
while j != i:
permutation[j], permutation[j-1] = permutation[j-1], permutation[j]
swaps.append((j, j-1))
j -= 1
return swaps