Source code for qrisp.core.quantum_variable

"""
\********************************************************************************
* Copyright (c) 2023 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************/
"""


import copy
import weakref

import matplotlib.pyplot as plt
import numpy as np

from qrisp.core.compilation import qompiler


[docs] class QuantumVariable: """ The QuantumVariable is the quantum equivalent of a regular variable in classical programming languages. All :ref:`quantum types <QuantumTypes>` inherit from this class. The QuantumVariable allows many automizations and quality of life improvements such as hidden qubit management, de/encoding to human readable labels or typing. Each QuantumVariable is registered in a :ref:`QuantumSession`. It can be accessed using the ``.qs`` attribute: >>> from qrisp import QuantumVariable >>> example_qv = QuantumVariable(3) >>> quantum_session = example_qv.qs The qubits of the QuantumVariable are stored as a list in the ``.reg`` attribute >>> qubits = example_qv.reg To quickly access the qubits of a given variable, we use the [ ] operator: >>> qubit_2 = example_qv[2] We can find out about the amount of qubits in the QuantumVariable with the ``.size`` attribute >>> example_qv.size 3 **Naming** QuantumVariables can be given names to identify them independently of their naming as Python objects. >>> example_qv_2 = QuantumVariable(3, name = "alice") >>> example_qv_2.name 'alice' If not explicitely specified during construction, a name is determined automatically. Qrisp will try to infer the name of the Python variable and if that fails, a generic name is given. >>> example_qv.name 'example_qv' In order to keep the generated quantum circuits comprehensive, the qubits are named after their containing QuantumVariable with an extra number, which indicates their index. >>> from qrisp import cx >>> cx(example_qv, example_qv_2) >>> print(example_qv.qs) :: QuantumCircuit: -------------- example_qv.0: ──■──────────── example_qv.1: ──┼────■─────── │ │ example_qv.2: ──┼────┼────■── ┌─┴─┐ │ │ alice.0: ┤ X ├──┼────┼── └───┘┌─┴─┐ │ alice.1: ─────┤ X ├──┼── └───┘┌─┴─┐ alice.2: ──────────┤ X ├ └───┘ Live QuantumVariables: --------------------- QuantumVariable example_qv QuantumVariable alice QuantumSessions can only contain uniquely named QuantumVariables. If two QuantumSessions are :ref:`merged <SessionMerging>` containing identically named QuantumVariables, the more recently created QuantumVariable will be renamed: :: from qrisp import QuantumFloat s = QuantumFloat(5) for i in range(4): temp = QuantumFloat(4) temp[:] = 2**i s += temp >>> print(s.qs) :: QuantumCircuit: -------------- ┌───────────┐┌───────────┐┌───────────┐┌───────────┐ s.0: ─────┤0 ├┤0 ├┤0 ├┤0 ├ │ ││ ││ ││ │ s.1: ─────┤1 ├┤1 ├┤1 ├┤1 ├ │ ││ ││ ││ │ s.2: ─────┤2 ├┤2 ├┤2 ├┤2 ├ │ ││ ││ ││ │ s.3: ─────┤3 ├┤3 ├┤3 ├┤3 ├ │ ││ ││ ││ │ s.4: ─────┤4 __iadd__ ├┤4 ├┤4 ├┤4 ├ ┌───┐│ ││ ││ ││ │ temp.0: ┤ X ├┤5 ├┤ ├┤ ├┤ ├ └───┘│ ││ ││ ││ │ temp.1: ─────┤6 ├┤ __iadd__ ├┤ ├┤ ├ │ ││ ││ ││ │ temp.2: ─────┤7 ├┤ ├┤ ├┤ ├ │ ││ ││ ││ │ temp.3: ─────┤8 ├┤ ├┤ __iadd__ ├┤ ├ └───────────┘│ ││ ││ │ temp_1.0: ──────────────────┤5 ├┤ ├┤ ├ ┌───┐ │ ││ ││ │ temp_1.1: ┤ X ├─────────────┤6 ├┤ ├┤ __iadd__ ├ └───┘ │ ││ ││ │ temp_1.2: ──────────────────┤7 ├┤ ├┤ ├ │ ││ ││ │ temp_1.3: ──────────────────┤8 ├┤ ├┤ ├ └───────────┘│ ││ │ temp_2.0: ───────────────────────────────┤5 ├┤ ├ │ ││ │ temp_2.1: ───────────────────────────────┤6 ├┤ ├ ┌───┐ │ ││ │ temp_2.2: ┤ X ├──────────────────────────┤7 ├┤ ├ └───┘ │ ││ │ temp_2.3: ───────────────────────────────┤8 ├┤ ├ └───────────┘│ │ temp_3.0: ────────────────────────────────────────────┤5 ├ │ │ temp_3.1: ────────────────────────────────────────────┤6 ├ │ │ temp_3.2: ────────────────────────────────────────────┤7 ├ ┌───┐ │ │ temp_3.3: ┤ X ├───────────────────────────────────────┤8 ├ └───┘ └───────────┘ Live QuantumVariables: --------------------- QuantumFloat s QuantumFloat temp QuantumFloat temp_1 QuantumFloat temp_2 QuantumFloat temp_3 Renaming does not happen for names given through the ``name`` keyword, unless the name ends with a ``*``. >>> example_qv_3 = QuantumVariable(3, name = "alice") >>> cx(example_qv, example_qv_3) Exception: Tried to merge QuantumSession containing identically named QuantumVariables >>> example_qv_4 = QuantumVariable(3, name = "alice*") >>> cx(example_qv, example_qv_4) >>> example_qv_4.name 'alice_1' Examples -------- Writing a function that brings an arbitrary QuantumVariable into a GHZ state :: from qrisp import QuantumVariable, h, cx def GHZ(qv): h(qv[0]) for i in range(1, qv.size): cx(qv[0], qv[i]) Evaluation: >>> qv = QuantumVariable(5) >>> GHZ(qv) >>> print(qv) {'00000': 0.5, '11111': 0.5} """ live_qvs = [] creation_counter = np.zeros(1) name_tracker = {}
[docs] def __init__(self, size, qs=None, name=None): r""" Constructs a QuantumVariable - possibly with a given name or in a given QuantumSession. Parameters ---------- size : int The amount of qubits this QuantumVariable contains. qs : QuantumSession, optional A QuantumSession object, where the QuantumVariable is supposed to be registered. The default is None. name : string, optional A name which uniquely identifies the QuantumVariable. If ended with a \*, name is allowed to be updated if a naming collision arises. By default, Qrisp will try to infer the name of the Python variable - otherwise a generic name is given. """ if size < 0: raise Exception( f"Tried to create QuantumVariable with invalid qubit amount {size}" ) # Store quantum session from qrisp.core import QuantumSession, merge_sessions if qs is not None: self.qs = qs else: self.qs = QuantumSession() self.size = int(size) self.user_given_name = False # If name is given, register variable in session manager if name is not None: self.user_given_name = True if name[-1] == "*": name = name[:-1] self.user_given_name = False try: self.name = name self.qs.register_qv(self) except RuntimeError: i = int(self.creation_counter) while True: try: self.name = name + "_" + str(i) self.qs.register_qv(self) except RuntimeError: i += 1 continue break else: self.name = name self.qs.register_qv(self) # Otherwise try to infer from code inspection else: from qrisp.misc import find_calling_line if type(self) is QuantumVariable: line = find_calling_line(1) else: line = find_calling_line(2) split_line = line.split("=") name_found = False if len(split_line) >= 2: python_var_name = split_line[0] if split_line[1].replace(" ", "")[:7] == "Quantum": python_var_name = python_var_name.split(" ")[0] python_var_name = python_var_name.split(" ")[-1] # name = self.get_unique_name(python_var_name) name = python_var_name self.name = name self.qs.register_qv(self) name_found = True # If this didn't work, generate a generic, unique name if not name_found: while True: try: self.name = self.get_unique_name() self.qs.register_qv(self) break except RuntimeError: pass import weakref # This attribute tracks the created QuantumVariables for the # auto_uncompute decorator # We use weak references as some qrisp modules rely on reference counting QuantumVariable.live_qvs.append(weakref.ref(self)) self.creation_time = int(self.creation_counter[0]) self.creation_counter += 1
def __or__(self, other): from qrisp import mcx, x, cx if len(self) > len(other): or_res = self.duplicate() else: or_res = other.duplicate() for i in range(min(len(self), len(other))): mcx([self[i], other[i]], or_res[i], ctrl_state=0) x(or_res[i]) for i in range(min(len(self), len(other)), len(self)): cx(self[i], or_res[i]) for i in range(min(len(self), len(other)), len(other)): cx(other[i], or_res[i]) return or_res def __and__(self, other): from qrisp import mcx if len(self) > len(other): and_res = self.duplicate() else: and_res = other.duplicate() for i in range(min(len(self), len(other))): mcx([self[i], other[i]], and_res[i]) return and_res def __xor__(self, other): from qrisp import cx if len(self) > len(other): and_res = self.duplicate() else: and_res = other.duplicate() for i in range(min(len(self), len(other))): cx(self[i], and_res[i]) cx(other[i], and_res[i]) return and_res
[docs] def delete(self, verify=False, recompute=False): r""" This method is for deleting a QuantumVariable and thus freeing up and resetting the used qubits. Note that this method has a different function than the destructor. Calling this method will tell the QuantumSession to mark the used qubits as free and apply a reset gate. If set to True, the keyword verify will cause a simulation to check, wether the deleted qubits are in the $\ket{0}$ state prior to resetting. This is helpfull during debugging, as it indicates wether the uncomputation of this QuantumVariable was successfull. After deletion, the QuantumVariable object is basically unchanged but an error will be raised if further operations on the deleted qubits are attempted. Parameters ---------- verify : bool, optional If this bool is set to True, Qrisp will verify that the deleted qubits are indeed in the $\ket{0}$ state. The default is ``False``. recompute : bool, optional If set to ``True``, this QuantumVariable can be recomputed if it is required for the uncomputation of another QuantumVariable. For more information on the (dis)advantages check :ref:`recomputation <recomputation>`. The default is ``False``. Raises ------ Exception Tried to delete qubits not in \|0> state. Examples -------- We create a QuantumVariable, execute some gates and try to delete with verify = True >>> from qrisp import QuantumVariable, x, h >>> qv = QuantumVariable(2) >>> x(qv[0]) >>> h(qv[1]) >>> qv.delete(verify = True) Exception: Tried to delete qubits not in |0> state. We now (manually) uncompute the gates >>> x(qv[0]) >>> h(qv[1]) >>> qv.delete(verify = True) >>> qv.is_deleted() True >>> x(qv[0]) Exception: Tried to perform operation x on unallocated qubit qv_1.0. """ if self.is_deleted(): return self.qs.delete_qv(self, verify) i = 0 while i < len(QuantumVariable.live_qvs): if QuantumVariable.live_qvs[i]() is None: QuantumVariable.live_qvs.pop(i) continue if QuantumVariable.live_qvs[i]().name == self.name: QuantumVariable.live_qvs.pop(i) break i += 1 if recompute: for qb in self.reg: qb.recompute = True
def is_deleted(self): for qb in self.reg: if not qb.allocated: return True else: return False
[docs] def duplicate(self, name=None, qs=None, init=False): r""" Duplicates the QuantumVariable in the sense that a new QuantumVariable is created with same type and parameters but initialized in the $\ket{0}$ state. Parameters ---------- name : string, optional A unique name to identify that QuantumVariable. If not given, a name will be generated. qs : QuantumSession, optional A QuantumSession, where the result should be registered. If not given, a new QuantumSession will be generated. init : bool, optional If set to True, the :meth:`init_from <qrisp.QuantumVariable.init_from>` method of the result will be called on self. The default is False. Returns ------- duplicate : Type of self The duplicated QuantumVariable. Examples -------- We create a QuantumFloat and duplicate: >>> from qrisp import QuantumFloat >>> qf_0 = QuantumFloat(4, signed = False) >>> qf_1 = qf_0.duplicate() >>> type(qf_1) qrisp.qtypes.quantum_float.QuantumFloat >>> qf_1.size 4 """ duplicate = copy.copy(self) from qrisp.core import QuantumSession new_qs = QuantumSession() # Register duplicate variable in session manager if name is not None: if name[-1] == "*": self.user_given_name = False name = name[:-1] else: duplicate.user_given_name = True duplicate.name = name new_qs.register_qv(duplicate) else: duplicate.user_given_name = False try: duplicate.name = self.name + "_dupl" new_qs.register_qv(duplicate) except NameError: i = 0 while True: try: duplicate.name = self.name + "_dupl" + str(i) new_qs.register_qv(duplicate) break except NameError: pass i += 1 from qrisp import merge duplicate.qs = new_qs # This attribute tracks the created QuantumVariables for the # auto_uncompute decorator # We use weak references as some qrisp modules rely on reference counting QuantumVariable.live_qvs.append(weakref.ref(duplicate)) duplicate.creation_time = int(self.creation_counter[0]) duplicate.creation_counter += 1 if qs is not None: merge(qs, new_qs) if init: duplicate.init_from(self) return duplicate
[docs] def decoder(self, i): """ The decoder method specifies how a QuantumVariable turns the outcomes of measurements into human-readable values. It recieves an integer ``i`` and returns a human-readable value. This method is supposed to be overloaded when defining new :ref:`quantum types <QuantumTypes>`. Parameters ---------- i : int Integer representing the outcome of a measurement of the qubits of this QuantumVariable. Returns ------- A human-readable value. Has to be hashable. Examples -------- We create a QuantumFloat and inspect its decoder: >>> from qrisp import QuantumFloat >>> qf = QuantumFloat(3, -1, signed = False) >>> print(qf.decoder(1)) 0.5 This implies that if the 3 qubits of this QuantumFloat are measured in state 001, this outcome corresponds to the value 0.5. """ from qrisp.misc import bin_rep return bin_rep(i, self.size)[::-1]
[docs] def encoder(self, value): """ The encoder reverses the decoder, it turns human-readable values into integers. If not overloaded, the encoder will perform a linear search on decoder inputs to match the given value. Parameters ---------- label : A human-readable value. Raises ------ Exception Unknown input value. Returns ------- i : int The integer encoding the given value. Examples -------- We create a QuantumChar and inspect it's encoder: >>> from qrisp import QuantumChar >>> q_ch = QuantumChar() >>> print(q_ch.encoder("f")) 5 This implies that if the 5 qubits of this QuantumChar are measured to ``5 = 00101``, the out come will be displayed as f. """ for i in range(2**self.size): if self.decoder(i) == value: return i raise Exception("Value " + str(value) + " not supported by encoder.")
[docs] def encode(self, value, permit_dirtyness=False): """ The encode method allows to quickly bring a QuantumVariable in a desired computational basis state. A shorthand for this method is given by the ``[:]`` operator. Note that the qubits to initialize have to be fresh (i.e. no operations performed on them). Parameters ---------- value : A value supported by the encoder. permit_dirtyness : bool, optional Surpresses the error message when calling encode on dirty qubits. Returns ------- None. Examples -------- We create two quantum floats and encode the value 2.5. For one of them, we perform an x gate onto the corresponding qubits, resulting in an error. >>> from qrisp import QuantumFloat, x >>> qf_0 = QuantumFloat(3, -1, signed = False) >>> qf_1 = QuantumFloat(3, -1, signed = False) >>> x(qf_0) >>> qf_0.encode(2.5) Exception: Tried to initialize qubits which are not fresh anymore. >>> qf_1[:] = 2.5 >>> print(qf_1) {2.5: 1.0} """ from qrisp.misc import check_if_fresh, int_encoder if not permit_dirtyness: if not check_if_fresh(self.reg, self.qs): raise Exception( "Tried to initialize qubits which are not fresh anymore." ) int_encoder(self, self.encoder(value))
[docs] def init_state(self, state_dic): r""" The ``init_state`` method allows the initialization of arbitrary quantum states. It recieves a dictionary of the type **{value : complex number}** and initializes the **normalized** state. Amplitudes not specified are assumed to be zero. Note that the state initialization algorithm requires it's qubits to be in state $\ket{0}$. A shorthand for this method is the ``[:]`` operator, when handed the corresponding dictionary Parameters ---------- state_dic : dict Dictionary describing the wave function to be initialized. Raises ------ Exception Tried to initialize qubits which are not fresh anymore. Examples -------- We create a QuantumFloat and encode the state .. math:: \ket{\psi} = \sqrt{\frac{1}{3}} \ket{0.5} + i\sqrt{\frac{2}{3}} \ket{2} >>> from qrisp import QuantumFloat >>> qf = QuantumFloat(3, -1) We can now use either >>> qf.init_state({0.5: (1/3)**0.5, 2.0 : 1j*(2/3)**0.5}) or: >>> qf[:] = {0.5: (1/3)**0.5, 2.0 : 1j*(2/3)**0.5} To acquire the expected result >>> print(qf) {2.0: 0.6667, 0.5: 0.3333} """ from qrisp.misc import check_if_fresh if not check_if_fresh(self.reg, self.qs): raise Exception("Tried to initialize qubits which are not fresh anymore.") from qrisp import init_state target_array = np.zeros(2**self.size, dtype=np.complex128) for key in state_dic.keys(): target_array[self.encoder(key)] = state_dic[key] target_array = target_array / np.vdot(target_array, target_array) ** 0.5 init_state(self, target_array)
def append(self, operation): self.qs.append(operation, self)
[docs] def extend(self, amount, position=-1): """ This method is used to add more qubits to the QuantumVariable. Using the position keyword it is possible to specify the position where the qubits should be added. By default, the qubits are added at the end. Parameters ---------- amount : int The amount of qubits to add. position : int, optional The position of where to add the qubits. By default, qubits are added at the end. st of qubits which are to be added to the QuantumVariable. The default is None. Raises ------ Exception Missmatch between proposed qubits and amount integer. Returns ------- None. Examples -------- We create a QuantumVariable and extend it with some extra qubits. >>> from qrisp import QuantumVariable >>> qv = QuantumVariable(3) >>> print(qv.reg) [Qubit(qv.0), Qubit(qv.1), Qubit(qv.2)] >>> qv.extend(3) >>> print(qv.reg) [Qubit(qv.0), Qubit(qv.1), Qubit(qv.2), Qubit(qv.6), Qubit(qv.6), Qubit(qv.6)] """ if position == -1: position = self.size insertion_qubits = self.qs.request_qubits(amount) for i in range(amount): insertion_qubits[i].identifier = ( self.name + "_ext_" + str(self.qs.qubit_index_counter[0]) + "." + str(self.size) ) self.reg.insert(position + i, insertion_qubits[i]) self.size += 1
[docs] def reduce(self, qubits, verify=False): r""" Reduces the qubit count of the QuantumVariable by removing a specified set of qubits. Parameters ---------- qubits : list The qubits to remove from the QuantumVariable. verify : bool Boolean value which indicates wether Qrisp should verify that the reduced qubits are in the $\ket{0}$ state. Raises ------ Exception Qubits not present in QuantumVariable. Exception Verification that the given qubits are in $\ket{0}$ state failed. Examples -------- We create a QuantumVariable with 5 qubits and remove the first 2 >>> from qrisp import QuantumVariable >>> qv = QuantumVariable(5) >>> print(qv.reg) [Qubit(qv.0), Qubit(qv.1), Qubit(qv.2), Qubit(qv.3), Qubit(qv.4)] >>> qv.reduce(qv[:2]) >>> print(qv.reg) [Qubit(qv.2), Qubit(qv.3), Qubit(qv.4)] """ try: len(qubits) except TypeError: qubits = [qubits] if not set(qubits).issubset(self.reg): raise Exception("Tried to reduce QuantumVariable by invalid qubits") # Find Qubits to be cleared for i in range(len(qubits)): for j in range(self.size): if self.reg[j] == qubits[i]: self.reg[j].identifier = "reduced_" + str( self.qs.qubit_index_counter[0] ) self.qs.qubit_index_counter += 1 self.reg.pop(j) break self.qs.clear_qubits(qubits, verify) # Adjust variable size self.size -= len(qubits)
[docs] def get_measurement( self, plot=False, backend=None, shots=None, compile=True, compilation_kwargs={}, subs_dic={}, circuit_preprocessor=None, filename=None, precompiled_qc=None, ): r""" Method for quick access to the measurement results of the state of the variable. This method returns a dictionary of the type {value : p} where p indicates the probability with which that value is measured. Parameters ---------- plot : Bool, optional Plots the measurement results as a historgram. The default is False. backend : BackendClient, optional The backend on which to evaluate the quantum circuit. The default can be specified in the file default_backend.py. shots : integer, optional The amount of shots to evaluate the circuit. The default is given by the backend it runs on. compile : bool, optional Boolean indicating if the .compile method of the underlying QuantumSession should be called before. The default is True. compilation_kwargs : dict, optional Keyword arguments for the compile method. For more details check :meth:`QuantumSession.compile <qrisp.QuantumSession.compile>`. The default is ``{}``. subs_dic : dict, optional A dictionary of Sympy symbols and floats to specify parameters in the case of a circuit with unspecified, :ref:`abstract parameters<QuantumCircuit>`. The default is {}. circuit_preprocessor : Python function, optional A function which recieves a QuantumCircuit and returns one, which is applied after compilation and parameter substitution. The default is None. filename : string, optional The location of where to save a generated plot. The default is None. Raises ------ Exception If the containing QuantumSession is in a quantum environment, it is not possible to execute measurements. Returns ------- dict A dictionary of values and their corresponding measurement probabilities. Examples -------- We create an integer :ref:`QuantumFloat`, encode the value 1 and bring the qubit with significance 2 in superposition. We utilize the Qiskit transpiler by transpiling into the gate set $\{\text{CX}, \text{U}\}$ >>> from qrisp import QuantumFloat, h >>> qf = QuantumFloat(3,-1) >>> qf[:] = 1 >>> h(qf[2]) >>> mes_results = qf.get_measurement(transpilation_kwargs = {"basis_gates" : ["cx", "u"]}) # noqa:501 >>> print(mes_results) {1.0: 0.5, 3.0: 0.5} """ if backend is None: if self.qs.backend is None: from qrisp.default_backend import def_backend backend = def_backend else: backend = self.qs.backend if len(self.qs.env_stack) != 0: raise Exception("Tried to get measurement within open environment") if self.is_deleted(): raise Exception("Tried to get measurement from deleted QuantumVariable") if self.size == 0: return {"": 1.0} if precompiled_qc is None: if compile: qc = qompiler( self.qs, intended_measurements=self.reg, **compilation_kwargs ) else: qc = self.qs.copy() else: qc = precompiled_qc.copy() # Bind parameters if subs_dic: qc = qc.bind_parameters(subs_dic) from qrisp.core.compilation import combine_single_qubit_gates qc = combine_single_qubit_gates(qc) # Copy circuit in over to prevent modification # from qrisp.quantum_network import QuantumNetworkClient # if isinstance(backend, QuantumNetworkClient): # self.qs.data = [] # shots = 1 # Execute user specified circuit_preprocessor if circuit_preprocessor is not None: qc = circuit_preprocessor(qc) qc = qc.transpile() from qrisp.misc import get_measurement_from_qc counts = get_measurement_from_qc(qc, self.reg, backend, shots) # Insert outcome labels (if available and hashable) try: new_counts_dic = {} sorted_keys = list(counts.keys()) sorted_keys.sort() for key in sorted_keys: new_counts_dic[self.decoder(key)] = counts[key] counts = new_counts_dic # Sort keys sorted_key_list = list(counts.keys()) sorted_key_list.sort(key=lambda x: -counts[x]) counts = {key: counts[key] for key in sorted_key_list} except TypeError: counts_tuple_list = [] for key in counts.keys(): counts_tuple_list.append((key, counts[key])) counts = counts_tuple_list counts.sorted(key=lambda x: x[1]) if plot: outcome_labels = [] for i in range(2**self.size): temp = self.decoder(i) try: hash(temp) except TypeError: raise Exception( "Outcome value " + str(self.decoder(i)) + " is not hashable" ) outcome_labels.append(temp) plot_histogram(outcome_labels, counts, filename) plt.show() # Return dictionary of measurement results return counts
[docs] def most_likely(self, **kwargs): """ Performs a measurement and returns the most likely outcome. Parameters ---------- **kwargs : Keyword arguments for the get_measurement call. Examples -------- >>> from qrisp import QuantumFloat, ry >>> import numpy as np >>> qf = QuantumFloat(3) >>> ry(np.pi*9/8, qf[0]) >>> print(qf) {1: 0.9619, 0: 0.0381} >>> qf.most_likely() 1 """ return list(self.get_measurement())[0]
def __getitem__(self, key): return self.reg[key] def __str__(self): return str(self.get_measurement()) def __repr__(self): return "<" + str(type(self)).split(".")[-1][:-2] + " '" + self.name + "'>" return str(type(self)).split(".")[-1][:-2] + "(name = " + self.name + ")" return str(self) def __del__(self): i = 0 while i < len(self.live_qvs): if self.live_qvs[i]() is None or id(self) == id(self.live_qvs[i]()): self.live_qvs.pop(i) continue i += 1 def __len__(self): return self.size # Overload equality operator to use python syntax for if environments? # Not sure if the possible user confusion is worth it def __eq__(self, other): from qrisp.environments import q_eq return q_eq(self, other) def __ne__(self, other): from qrisp.environments import q_eq return q_eq(self, other, invert=True) def __hash__(self): return self.creation_time def __setitem__(self, key, value): if key != slice(None, None, None): raise Exception( "Tried to encode value into QuantumVariable using non-trivial slicing." ) if isinstance(type(value), type(None)): return if isinstance(value, dict): self.init_state(value) return if isinstance(value, QuantumVariable): self.init_from(value) return self.encode(value)
[docs] def app_phase_function(self, phi): r""" Applies a previously specified phase function to each computational basis state of the QuantumVariable using Gray-Synthesis. For a given phase function $\phi(x)$ and a QuantumVariable in state $\ket{\psi} = \sum_{x \in \text{Labels}} a_x \ket{x}$ this method acts as: .. math:: U_{\phi} \sum_{x \in \text{Labels}} a_x \ket{x} = \sum_{x \in \text{Labels}} \text{exp}(i\phi(x)) a_x \ket{x} Parameters ---------- phi : Python function A Python function which turns the labels of the QuantumVariable into floats. Examples -------- We create a QuantumFloat and encode the k-th basis state of the Fourier basis. Finally, we will apply an inverse Fourier transformation to measure k in the computational basis. >>> import numpy as np >>> from qrisp import QuantumFloat, h, QFT >>> n = 5 >>> qf = QuantumFloat(n, signed = False) >>> h(qf) After this, qf is in the state .. math:: \ket{\text{qf}} = \frac{1}{\sqrt{2^n}} \sum_{x = 0}^{2^n} \ket{x} We specify phi >>> k = 4 >>> def phi(x): >>> return 2*np.pi*x*k/2**n And apply phi as a phase function >>> qf.app_phase_function(phi) qf is now in the state .. math:: \ket{\text{qf}} = \frac{1}{\sqrt{2^n}} \sum_{x = 0}^{2^n} \text{exp}\left( \frac{2\pi ikx}{2^n}\right) \ket{x} Finally we apply the inverse Fourier transformation and measure: >>> QFT(qf, inv = True) >>> print(qf) {4: 1.0} """ from qrisp.misc import app_phase_function app_phase_function([self], phi)
[docs] def uncompute(self, do_it=True, recompute=False): """ Method for automatic uncomputation. Uses a generalized form of `this algorithm <https://dl.acm.org/doi/10.1145/3453483.3454040>`_. For more information check the :ref:`uncomputation documentation<uncomputation>`. Parameters ---------- do_it : bool, optional If set to False, this variable will be appended to the uncomputation stack of it's QuantumSession and uncomputed once an uncompute call with ``do_it = True`` is performed. The default is True. recompute : bool, optional If set to True, this QuantumVariable will be uncomputed but temporarily recomputed, if it is required for the uncomputation of another QuantumVariable. For more information check :ref:`recomputation <recomputation>`. The default is False. Examples -------- We create two QuantumVariables, apply some gates and perform automatic uncomputation: >>> from qrisp import QuantumVariable, x, cx, h, p, mcx >>> a = QuantumVariable(3) >>> b = QuantumVariable(2) >>> mcx(a, b[0]) >>> h(a[:2]) >>> x(b[0]) >>> cx(b[0], b[1]) >>> p(0.5, b[1]) >>> print(a.qs) :: QuantumCircuit: -------------- ┌───┐ a.0: ──■──┤ H ├─────────────── │ ├───┤ a.1: ──■──┤ H ├─────────────── │ └───┘ a.2: ──■────────────────────── ┌─┴─┐┌───┐ b.0: ┤ X ├┤ X ├──■──────────── └───┘└───┘┌─┴─┐┌────────┐ b.1: ──────────┤ X ├┤ P(0.5) ├ └───┘└────────┘ Live QuantumVariables: --------------------- QuantumVariable a QuantumVariable b >>> b.uncompute() >>> print(b.qs) :: QuantumCircuit: -------------- ┌────────┐ ┌────────┐┌───┐ a.0: ┤0 ├──────────────────────────────┤0 ├┤ H ├ │ │ │ │├───┤ a.1: ┤1 ├──────────────────────────────┤1 ├┤ H ├ │ pt3cx │ │ pt3cx │└───┘ a.2: ┤2 ├──────────────────────────────┤2 ├───── │ │┌───┐ ┌───┐│ │ b.0: ┤3 ├┤ X ├──■──────────────■──┤ X ├┤3 ├───── └────────┘└───┘┌─┴─┐┌────────┐┌─┴─┐└───┘└────────┘ b.1: ───────────────┤ X ├┤ P(0.5) ├┤ X ├──────────────────── └───┘└────────┘└───┘ Live QuantumVariables: --------------------- QuantumVariable a """ if self.is_deleted(): raise Exception("Tried to uncompute deleted QuantumVariable") if do_it: from qrisp.permeability import uncompute uncompute(self.qs, self.qs.uncomp_stack + [self], recompute) self.qs.uncomp_stack = [] else: self.qs.uncomp_stack.append(self)
def get_unique_name(self, name=None): if name is None: from qrisp import QuantumBool, QuantumChar, QuantumFloat if isinstance(self, QuantumBool): name = "qbl" elif isinstance(self, QuantumFloat): name = "qf" elif isinstance(self, QuantumChar): name = "qch" else: name = "qv" while True: try: naming_number = self.name_tracker[name] self.name_tracker[name] += 1 name = name + "_" + str(naming_number) except KeyError: self.name_tracker[name] = 1 name = name + "_0" i = 0 while i < len(QuantumVariable.live_qvs): qv = QuantumVariable.live_qvs[i]() if qv is None: QuantumVariable.live_qvs.pop(i) continue if qv.name == name: break i += 1 else: break return name
[docs] def init_from(self, other): r""" Method to initiate a QuantumVariable based on the state of another. This method does NOT copy the state. Much rather it performs the operation .. math:: U_{\text{init_from}} \left( \sum_{x \in \text{labels}} a_x \ket{x} \right) \ket{0} = \sum_{x \in \text{labels}} a_x \ket{x} \ket{x} This is different from a state copying operation: .. math:: U_{\text{copy}} \left( \sum_{x \in \text{labels}} a_x \ket{x} \right) \ket{0} = \left( \sum_{x \in \text{labels}} a_x \ket{x} \right) \left( \sum_{x \in \text{labels}} a_x \ket{x} \right) A shorthand for initiating this way is the ``[:]`` operator. Parameters ---------- other : QuantumVariable The QuantumVariable from which to initiate. Raises ------ Exception Tried to initialize qubits which are not fresh anymore. Examples -------- We create a QuantumFloat, and bring it into superposition. >>> from qrisp import QuantumFloat, h, multi_measurement >>> qf_a = QuantumFloat(8) >>> qf_a[:] = 6 >>> h(qf_a[0]) >>> print(qf_a) {6: 0.5, 7: 0.5} We now duplicate and initiate the duplicate >>> qf_b = qf_a.duplicate() >>> print(qf_b) {0: 1.0} >>> qf_b.init_from(qf_a) >>> print(multi_measurement([qf_a, qf_b])) {(6, 6): 0.5, (7, 7): 0.5} The slicing operator achieves the same: >>> qf_c = qf_a.duplicate() >>> qf_c[:] = qf_b >>> print(multi_measurement([qf_a, qf_b, qf_c])) {(6, 6, 6): 0.5, (7, 7, 7): 0.5} """ if not type(self) == type(other): raise Exception( "Tried to initialize " + str(type(self)) + " from " + str(type(other)) ) from qrisp.misc import check_if_fresh if not check_if_fresh(self.reg, self.qs): raise Exception("Tried to initialize qubits which are not fresh anymore") self.qs.cx(other.reg, self.reg)
[docs] @classmethod def custom(self, label_list, decoder=None, qs=None, name=None): """ Creates a QuantumVariable with customized outcome labels. Note that this is a class method, implying there is no need to create another QuantumVariable first to call this method. Parameters ---------- label_list : list A list of outcome labels. decoder : function, optional The decoder function. If given none, the labels will be encoded according to their placement in the ``label_list``. qs : QuantumSession, optional The :ref:`QuantumSession` in which to register the customized QuantumVariable. If given none, the QuantumVariable will be registered in a new QuantumSession. name : string, optional The name of the QuantumVariable. If given none, a suited name will be generated. Returns ------- CustomQuantumVariable A QuantumVariable with the desired outcome labels. Examples -------- We create a QuantumVariable with some examples values as outcome labels and bring it into uniform superposition. >>> from qrisp import QuantumVariable, h >>> qv = QuantumVariable.custom(["lorem", "ipsum", "dolor", "sit", 42, (1,2,3)]) >>> h(qv) >>> print(qv) {'lorem': 0.125, 'ipsum': 0.125, 'dolor': 0.125, 'sit': 0.125, 42: 0.125, (1, 2, 3): 0.125, 'undefined_label_6': 0.125, 'undefined_label_7': 0.125} """ from qrisp.misc import custom_qv return custom_qv(label_list, decoder=decoder, qs=qs, name=name)
def plot_histogram(outcome_labels, counts, filename=None): res_list = [] for k in range(len(outcome_labels)): try: res_list.append(counts[outcome_labels[k]]) except KeyError: res_list.append(0) plt.bar(outcome_labels, res_list, width=0.8) plt.grid() plt.ylabel("Measurement probability") plt.xlabel("QuantumVariable value") if filename: plt.savefig(filename, dpi=400, bbox_inches="tight") else: plt.show()