VQE Heisenberg model#
Heisenberg problem#
- heisenberg_problem(G, J, B, ansatz_type='per hamiltonian')[source]#
Creates a VQE problem instance for an isotropic Heisenberg model defined by a graph
, the coupling constant (antiferromagnetic), and the magnetic field strength . The model Hamiltonian is given by:Each Hamiltonian
has three eigenvectors for eigenvalue (triplet states):and one eigenvector for eigenvalue
(singlet state):For the problem specific VQE ansatz, we choose a Hamiltonian Variational Ansatz as proposed here. This ansatz is inspired by the adiabatic theorem of quantum mechanics: A system is prepared in the ground state of an initial Hamiltonian
and then slowly evolved under a time-dependet Hamiltoniam . Here, we setwhere
for a maximal matching
of the graph .For
the ground state of the initial Hamiltonian is given by a tensor product of singlet states corresponding to the maximal matching .The time evolution of
is approximately implemented by trotterization, i.e., alternatingly applying and , and if necessary trotterizing .In the scope of VQE, the short evolution times
are replaced by parameters which are then optimized. This yields the following unitary ansatz with layers:The unitary
trotterized by:where
is an edge coloring of the graph , and is the magnetic field Hamiltonian. Then all unitaries for commute. For implementing such unitaries, note that each two-qubit Heisenberg interaction unitarybecomes diagonal in Bell basis, i.e.,
.This ansatz can be further generalized by introducing parameters
per edge color (one parameter for each color)
per edge (one parameter for each edge)
in the unitary
.- Parameters:
- Gnx.Graph
The graph defining the lattice.
- Jfloat
The positive coupling constant.
- Bfloat
fhe magnetic field strength.
- ansatz_typestring, optional
Specifies the Hamiltonian Variational Ansatz. Available are
per hamiltonian
,per edge color
,per edge
. The default isper hamiltonian
.
- Returns:
- VQEProblem
VQE problem instance for a specific isotropic Heisenberg model.
Examples
import networkx as nx import matplotlib.pyplot as plt # Create a graph G = nx.Graph() G.add_edges_from([(0,1),(1,2),(2,3),(0,3)]) # Draw the graph with labels pos = nx.spring_layout(G) nx.draw(G, pos, with_labels=True, node_size=700, node_color='lightblue') nx.draw_networkx_labels(G, pos) plt.show()
from qrisp import QuantumVariable from qrisp.vqe.problems.heisenberg import * vqe = heisenberg_problem(G,1,1) vqe.set_callback() energy = vqe.run(QuantumVariable(G.number_of_nodes()),depth=2,max_iter=50) print(energy) # Yields -8.0
We visualize the optimization process:
>>> vqe.visualize_energy(exact=True)
Hamiltonian#
- create_heisenberg_hamiltonian(G, J, B)[source]#
This method creates the Hamiltonian for the Heisenberg model.
- Parameters:
- Gnx.Graph
The graph defining the lattice.
- Jfloat
The positive coupling constant.
- Bfloat
The magnetic field strength.
- Returns:
- HQubitOperator
The quantum Hamiltonian.
Ansatz#
- create_heisenberg_ansatz(G, J, B, M, C, ansatz_type='per hamiltonian')[source]#
This method creates a function for applying one layer of the ansatz.
- Parameters:
- Gnx.Graph
The graph defining the lattice.
- Jfloat
The positive coupling constant.
- Bfloat
The magnetic field strength.
- Mlist
A list of edges corresponding to a maximal matching of
G
.- Clist
An edge coloring of the graph
G
given by a list of lists of edges.- ansatz_typestring, optional
Specifies the Hamiltonian Variational Ansatz. Available are
per hamiltonian
,per edge color
,per edge
. The default isper hamiltonian
.
- Returns:
- ansatzfunction
A function that can be applied to a QuantumVariable and a list of parameters.
- create_heisenberg_init_function(M)[source]#
Creates the function that, when applied to a QuantumVariable, initializes a tensor product of singlet sates corresponding to a given matching.
- Parameters:
- Mlist
A list of edges corresponding to a maximal matching of
G
.
- Returns:
- init_functionfunction
A function that can be applied to a QuantumVariable.