VQE Heisenberg model#

Heisenberg problem#

heisenberg_problem(G, J, B, ansatz_type='per hamiltonian')[source]#

Creates a VQE problem instance for an isotropic Heisenberg model defined by a graph G=(V,E), the coupling constant J>0 (antiferromagnetic), and the magnetic field strength B. The model Hamiltonian is given by:

H=J(i,j)E(XiXj+YiYj+ZiZj)+BiVZi

Each Hamiltonian Hi,j=XiXj+YiYj+ZiZj has three eigenvectors for eigenvalue +1 (triplet states):

  • |00

  • |11

  • 12(|10+|01)

and one eigenvector for eigenvalue 3 (singlet state):

  • 12(|10|01)

For the problem specific VQE ansatz, we choose a Hamiltonian Variational Ansatz as proposed here. This ansatz is inspired by the adiabatic theorem of quantum mechanics: A system is prepared in the ground state of an initial Hamiltonian H0 and then slowly evolved under a time-dependet Hamiltoniam H(t). Here, we set

H(t)=(1tT)H0+tTH

where

H0=(i,j)M(XiXj+YiYj+ZiZj)

for a maximal matching ME of the graph G.

For J>0 the ground state of the initial Hamiltonian H0 is given by a tensor product of singlet states corresponding to the maximal matching M.

The time evolution of H(t) is approximately implemented by trotterization, i.e., alternatingly applying eiH0Δt and eiHΔt, and if necessary trotterizing eiHΔt.

In the scope of VQE, the short evolution times Δt are replaced by parameters θi which are then optimized. This yields the following unitary ansatz with p layers:

U(θ)=l=1peiθl,0H0eiθl,1H

The unitary eiθH trotterized by:

UH(θ)=eiθHBk=1q(i,j)EkeiθHij

where E1,,Eq is an edge coloring of the graph G, and HB is the magnetic field Hamiltonian. Then all unitaries eiθHij for (i,j)Ek commute. For implementing such unitaries, note that each two-qubit Heisenberg interaction unitary

Heis(θ)eiθ/4eiθHij=(eiθ/20000cos(θ/2)isin(θ/2)00isin(θ/2)cos(θ/2)0000eiθ/2)

becomes diagonal in Bell basis, i.e., eiθ/2diag(1,1,1,eiθ).

This ansatz can be further generalized by introducing parameters

  • per edge color (one parameter for each color)

  • per edge (one parameter for each edge)

in the unitary UH(θ).

Parameters:
Gnx.Graph

The graph defining the lattice.

Jfloat

The positive coupling constant.

Bfloat

fhe magnetic field strength.

ansatz_typestring, optional

Specifies the Hamiltonian Variational Ansatz. Available are per hamiltonian, per edge color, per edge. The default is per hamiltonian.

Returns:
VQEProblem

VQE problem instance for a specific isotropic Heisenberg model.

Examples

import networkx as nx
import matplotlib.pyplot as plt

# Create a graph
G = nx.Graph()
G.add_edges_from([(0,1),(1,2),(2,3),(0,3)])

# Draw the graph with labels
pos = nx.spring_layout(G)
nx.draw(G, pos, with_labels=True, node_size=700, node_color='lightblue')
nx.draw_networkx_labels(G, pos)
plt.show()
../../../../_images/heisenberg_lattice.png
from qrisp import QuantumVariable
from qrisp.vqe.problems.heisenberg import *

vqe = heisenberg_problem(G,1,1)
vqe.set_callback()
energy = vqe.run(QuantumVariable(G.number_of_nodes()),depth=2,max_iter=50)
print(energy)
# Yields -8.0

We visualize the optimization process:

>>> vqe.visualize_energy(exact=True)
../../../../_images/heisenberg_energy.png

Hamiltonian#

create_heisenberg_hamiltonian(G, J, B)[source]#

This method creates the Hamiltonian for the Heisenberg model.

Parameters:
Gnx.Graph

The graph defining the lattice.

Jfloat

The positive coupling constant.

Bfloat

The magnetic field strength.

Returns:
HQubitOperator

The quantum Hamiltonian.

Ansatz#

create_heisenberg_ansatz(G, J, B, M, C, ansatz_type='per hamiltonian')[source]#

This method creates a function for applying one layer of the ansatz.

Parameters:
Gnx.Graph

The graph defining the lattice.

Jfloat

The positive coupling constant.

Bfloat

The magnetic field strength.

Mlist

A list of edges corresponding to a maximal matching of G.

Clist

An edge coloring of the graph G given by a list of lists of edges.

ansatz_typestring, optional

Specifies the Hamiltonian Variational Ansatz. Available are per hamiltonian, per edge color, per edge. The default is per hamiltonian.

Returns:
ansatzfunction

A function that can be applied to a QuantumVariable and a list of parameters.

create_heisenberg_init_function(M)[source]#

Creates the function that, when applied to a QuantumVariable, initializes a tensor product of singlet sates corresponding to a given matching.

Parameters:
Mlist

A list of edges corresponding to a maximal matching of G.

Returns:
init_functionfunction

A function that can be applied to a QuantumVariable.