"""
\********************************************************************************
* Copyright (c) 2023 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************/
"""
import numpy as np
from qrisp.qtypes.quantum_float import QuantumFloat
from qrisp.misc import gate_wrap
def comparison_wrapper(func):
def res_func(self, other):
if self.m != 0:
raise Exception("Tried to evaluate QuantumModulus comparison with non-zero Montgomery shift")
conversion_flag = False
if isinstance(other, QuantumModulus):
if other.m != 0:
raise Exception("Tried to evaluate QuantumModulus comparison with non-zero Montgomery shift")
if self.modulus != other.modulus:
raise Exception("Tried to compare QuantumModulus instances of differing modulus")
other.__class__ = QuantumFloat
self.__class__ = QuantumFloat
res = func(self, other)
self.__class__ = QuantumModulus
if conversion_flag:
other.__class__ = QuantumModulus
return res
return res_func
[docs]
class QuantumModulus(QuantumFloat):
r"""
This class is a subtype of :ref:`QuantumFloat`, which can be used to model and
process `modular arithmetic <https://en.wikipedia.org/wiki/Modular_arithmetic>`_.
Modular arithmetic plays an important role in many cryptographical applications,
especially in Shor's algorithm.
The QuantumModulus allows users convenient access to modular arithmetic, which
for many gate based frameworks is rather complicated due to the intricacies
of the reduction process.
For a first example we simply add two instances:
>>> from qrisp import QuantumModulus
>>> N = 13
>>> a = QuantumModulus(N)
>>> b = QuantumModulus(N)
>>> a[:] = 5
>>> b[:] = 10
>>> c = a + b
>>> print(c)
{2: 1.0}
We get the output 2 because
>>> (5 + 10)%13
2
Similar to :ref:`QuantumFloat`, subtraction and addition are also supported:
>>> d = a*b
>>> print(d)
{11: 1.0}
Check the result:
>>> (5*10)%13
11
Especially relevant for Shor's algorithm are the in-place operations:
>>> a = QuantumModulus(N)
>>> a[:] = 5
>>> a *= 10
>>> print(a)
{11: 1.0}
**Specifying a custom adder**
It is possible to specify a custom adder that is used when processing the
Modular-Arithmetic. For this, you can use the ``inpl_adder`` keyword.
By default, the `Fourier-adder <https://arxiv.org/abs/quant-ph/0008033>`_
is used, but we can for instance also try the `Cuccaro-adder <https://arxiv.org/abs/quant-ph/0410184>`_.
>>> from qrisp import cuccaro_adder
>>> a = QuantumModulus(N, inpl_adder = cuccaro_adder)
>>> a[:] = 5
>>> a *= 10
>>> print(a)
{11: 1.0}
Or the `Gidney-adder <https://arxiv.org/abs/1709.06648>`_.
>>> from qrisp import gidney_adder
>>> a = QuantumModulus(N, inpl_adder = gidney_adder)
>>> a[:] = 5
>>> a *= 10
>>> print(a)
{11: 1.0}
To learn how to create your own adder for this feature, please visit :meth:`this page <qrisp.inpl_adder_test>`.
.. warning::
Currently the adder is only used in in-place multiplication, since this is the
relevant operation for Shor's algorithm. The other operations (such as addition etc.)
will follow in a future release of Qrisp.
**Advanced usage**
The modular multiplication uses a technique called `Montgomery reduction <https://en.wikipedia.org/wiki/Montgomery_modular_multiplication>`_.
The quantum version of this algorithm can be found in `this paper <https://arxiv.org/abs/1801.01081>`__.
The idea behind Montgomery reduction is to choose a differing representation of numbers to enhance
the reduction step of modular arithmetic. This representation works as follows:
For an integer $m$ called Montgomery shift, the modular number $a \in \mathbb{Z}/N\mathbb{Z}$ is represented as
.. math::
\hat{k} = (2^{-m} k) \text{mod} N
If you're interested in why this representation is advantageous, we recommend
checking out the linked resources above.
For Qrisp, the Montgomery shift can be modified via the attribute ``m``.
>>> a = QuantumModulus(N)
>>> a.m = 3
>>> a[:] = 1
>>> print(a)
{1: 1.0}
We shift back to 0:
>>> a.m -= 3
>>> print(a)
{8: 1.0}
Note that this shift is only a compiler shift - ie. no quantum gates are applied.
Instead the :meth:`decoder <qrisp.QuantumVariable.decoder>` function is modified.
"""
def __init__(self, modulus, inpl_adder = None, qs = None):
self.m = int(np.ceil(np.log2(modulus)))
self.modulus = modulus
QuantumFloat.__init__(self, msize = self.m, qs = qs)
if inpl_adder is None:
from qrisp.alg_primitives.arithmetic import fourier_adder
inpl_adder = fourier_adder
self.inpl_adder = inpl_adder
self.m = 0
def decoder(self, i):
from qrisp.alg_primitives.arithmetic.modular_arithmetic import montgomery_decoder
if i >= self.modulus:# or (np.gcd(i, self.modulus) != 1 and i != 0):
return np.nan
return montgomery_decoder(i, 2**self.m, self.modulus)
def encoder(self, i):
from qrisp.alg_primitives.arithmetic.modular_arithmetic import montgomery_encoder
if i >= self.modulus:# or (np.gcd(i, self.modulus) != 1 and i != 0):
return np.nan
return montgomery_encoder(i, 2**self.m, self.modulus)
@gate_wrap(permeability="args", is_qfree=True)
def __mul__(self, other):
from qrisp.alg_primitives.arithmetic.modular_arithmetic import montgomery_mod_mul, montgomery_mod_semi_mul
if isinstance(other, QuantumModulus):
return montgomery_mod_mul(self, other)
elif isinstance(other, int):
return montgomery_mod_semi_mul(self, other)
else:
raise Exception("Quantum modular multiplication with type {type(other)} not implemented")
__rmul__ = __mul__
@gate_wrap(permeability=[1], is_qfree=True)
def __imul__(self, other):
if isinstance(other, int):
from qrisp.alg_primitives.arithmetic.modular_arithmetic import qft_semi_cl_inpl_mult, semi_cl_inpl_mult
from qrisp.alg_primitives.arithmetic.adders import fourier_adder
if self.inpl_adder is fourier_adder:
return qft_semi_cl_inpl_mult(self, other%self.modulus)
else:
return semi_cl_inpl_mult(self, other%self.modulus)
else:
raise Exception("Quantum modular multiplication with type {type(other)} not implemented")
@gate_wrap(permeability="args", is_qfree=True)
def __add__(self, other):
if isinstance(other, int):
other = self.encoder(other%self.modulus)
elif isinstance(other, QuantumModulus):
if self.m != other.m:
raise Exception("Tried to add two QuantumModulus with differing Montgomery shift")
elif isinstance(other, QuantumFloat):
if self.m != 0:
raise Exception("Tried to add a QuantumFloat and QuantumModulus with non-zero Montgomery shift")
from qrisp.alg_primitives.arithmetic.modular_arithmetic import mod_adder
res = self.duplicate(init = True)
mod_adder(other, res, self.inpl_adder, self.modulus)
return res
__radd__ = __mul__
@gate_wrap(permeability=[1], is_qfree=True)
def __iadd__(self, other):
if isinstance(other, int):
other = self.encoder(other%self.modulus)
elif isinstance(other, QuantumModulus):
if self.m != other.m:
from qrisp.alg_primitives.arithmetic.modular_arithmetic import montgomery_addition
montgomery_addition(other, self)
return self
elif isinstance(other, QuantumFloat):
if self.m != 0:
raise Exception("Tried to add a QuantumFloat and QuantumModulus with non-zero Montgomery shift")
from qrisp.alg_primitives.arithmetic.modular_arithmetic import mod_adder
mod_adder(other, self, self.inpl_adder, self.modulus)
return self
@gate_wrap(permeability="args", is_qfree=True)
def __sub__(self, other):
if isinstance(other, int):
other = self.encoder(other%self.modulus)
elif isinstance(other, QuantumModulus):
if self.m != other.m:
raise Exception("Tried to add subtract QuantumModulus with differing Montgomery shift")
elif isinstance(other, QuantumFloat):
if self.m != 0:
raise Exception("Tried to subtract a QuantumFloat and QuantumModulus with non-zero Montgomery shift")
from qrisp.alg_primitives.arithmetic.modular_arithmetic import mod_adder
from qrisp.environments import invert
res = self.duplicate(init = True)
with invert():
mod_adder(other, res, self.inpl_adder, self.modulus)
return res
@gate_wrap(permeability="args", is_qfree=True)
def __rsub__(self, other):
if isinstance(other, int):
other = self.encoder(other%self.modulus)
elif isinstance(other, QuantumModulus):
if self.m != other.m:
raise Exception("Tried to add subtract QuantumModulus with differing Montgomery shift")
elif isinstance(other, QuantumFloat):
if self.m != 0:
raise Exception("Tried to subtract a QuantumFloat and QuantumModulus with non-zero Montgomery shift")
from qrisp.alg_primitives.arithmetic.modular_arithmetic import mod_adder
res = self.duplicate()
res -= self
mod_adder(other, res, self.inpl_adder, self.modulus)
return res
@gate_wrap(permeability=[1], is_qfree=True)
def __isub__(self, other):
if isinstance(other, int):
other = self.encoder(other%self.modulus)
elif isinstance(other, QuantumModulus):
if self.m != other.m:
raise Exception("Tried to add subtract QuantumModulus with differing Montgomery shift")
elif isinstance(other, QuantumFloat):
if self.m != 0:
raise Exception("Tried to subtract a QuantumFloat and QuantumModulus with non-zero Montgomery shift")
from qrisp.alg_primitives.arithmetic.modular_arithmetic import mod_adder
from qrisp.environments import invert
with invert():
mod_adder(other, self, self.inpl_adder, self.modulus)
return self
@comparison_wrapper
def __lt__(self, other):
return QuantumFloat.__lt__(self, other)
@comparison_wrapper
def __gt__(self, other):
return QuantumFloat.__gt__(self, other)
@comparison_wrapper
def __le__(self, other):
return QuantumFloat.__le__(self, other)
@comparison_wrapper
def __ge__(self, other):
return QuantumFloat.__ge__(self, other)
@comparison_wrapper
def __eq__(self, other):
return QuantumFloat.__eq__(self, other)
@comparison_wrapper
def __ne__(self, other):
return QuantumFloat.__ne__(self, other)
def __hash__(self):
return QuantumFloat.__hash__(self)