Source code for qrisp.environments.quantum_conditionals
"""\********************************************************************************* Copyright (c) 2025 the Qrisp authors** This program and the accompanying materials are made available under the* terms of the Eclipse Public License 2.0 which is available at* http://www.eclipse.org/legal/epl-2.0.** This Source Code may also be made available under the following Secondary* Licenses when the conditions for such availability set forth in the Eclipse* Public License, v. 2.0 are satisfied: GNU General Public License, version 2* with the GNU Classpath Exception which is* available at https://www.gnu.org/software/classpath/license.html.** SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0********************************************************************************/"""fromqrisp.core.quantum_variableimportQuantumVariablefromqrisp.core.gate_application_functionsimportp,rz,x,zfromqrisp.core.session_merging_toolsimportmergefromqrisp.environments.quantum_environmentsimportQuantumEnvironmentfromqrisp.environments.quantum_inversionimportinvertfromqrisp.miscimport(find_calling_line,perm_lock,perm_unlock,redirect_qfunction,unlock,)fromqrisp.circuitimportfast_appenddefquantum_condition(function):defq_env_generator(*args,**kwargs):returnConditionEnvironment(function,args,kwargs=kwargs)returnq_env_generator# Class to describe if-environments# For more information on how Environments work, check the QuantumEnvironment class.# This class is instantiated with a function returning a qubit,# which indicates wther the condition is met.# On entering this environment, the function will be evaluated and the content# (i.e. the quantum operations) will be collected.# When compiled, this environment will check for parent conditional environments and# include their truth value into the compilation process. Subsequently, every operation# that happened inside this environment is turned into it's controlled version.# Finally, the function evaluating the truth value will be uncomputed and# the environment is reset for it's next use.
[docs]classConditionEnvironment(QuantumEnvironment):r""" This class enables the usage of *if*-conditionals as we are used to from classical programming: :: from qrisp import QuantumChar, QuantumFloat, h, multi_measurement q_ch = QuantumChar() qf = QuantumFloat(3, signed = True) h(q_ch[0]) with q_ch == "a": qf += 2 >>> print(multi_measurement([q_ch,qf])) {('a', 2): 0.5, ('b', 0): 0.5} In this code snippet, we first bring the :ref:`QuantumChar` ``q_ch`` into the superposition .. math:: \ket{\text{q_ch}} = \frac{1}{\sqrt{2}} \left( \ket{\text{"a"}} + \ket{\text{"b"}} \right) After that, we enter the ConditionEnvironment, which controls the operations on the condition that ``q_ch`` is in state $\ket{a}$. Finally, we simultaneously measure both :ref:`QuantumVariables <QuantumVariable>`. We see that the incrementation of ``qf`` only occured on the branch, where ``q_ch`` is equal to the character ``"a"``. The resulting quantum state is: .. math:: \ket{\psi} = \frac{1}{\sqrt{2}} \left( \ket{\text{"a"}}\ket{2} + \ket{\text{"b"}}\ket{0} \right) It is furthermore possible to invert the condition truth value or apply phases. For this we acquire the :ref:`QuantumBool` containing the truth value using the *as* statement :: from qrisp import x, p import numpy as np with q_ch == "a" as cond_bool: qf += 2 cond_bool.flip() qf -= 2 p(np.pi/4, cond_bool) >>> qf.qs.statevector() sqrt(2)*(|a>*|4> + exp(I*pi/4)*|b>*|-2>)/2 **Constructing custom conditional environments** Apart from infix notation like the equality operator, Qrisp also provides an interface for creating custom conditonal environments. Parameters ---------- cond_eval_function : function A function which evaluates the truth value. Must return a :ref:`QuantumBool`. Intermediate results do not have to be uncomputed or deleted, as this is automatically performed, when the condition truth value is uncomputed. args : list The arguments on which to evaluate. kwargs : dict, optional A dictionary of keyword arguments for ``cond_eval_function``. The default is {}. Examples -------- We will now demonstrate how a ConditionEnvironment, that evaluates the equality of two :ref:`QuantumVariables <QuantumVariable>` can be constructed: :: from qrisp import QuantumBool, QuantumVariable, x, cx, mcx def quantum_eq(qv_0, qv_1): if qv_0.size != qv_1.size: raise Exception("Tried to evaluate equality condition for QuantumVariables of differing size") temp_qv = QuantumVariable(qv_0.size) cx(qv_0, temp_qv) cx(qv_1, temp_qv) x(temp_qv) res = QuantumBool() mcx(temp_qv, res) return res In this function, we create a temporary variable where we apply CX gates controlled on the inputs onto. The qubits where ``qv_0`` and ``qv_1`` agree, will then be in state $\ket{0}$. After this, we apply regular X gates onto ``temp_qv`` such that the qubits where the inputs agree, are in state $\ket{1}$. Finally, we apply a multi-controlled X gate onto the result to flip the result, if all of qubits of the qubits in ``temp_qv`` are in the $\ket{0}$ state. We inspect the resulting QuantumCircuit >>> from qrisp import QuantumChar >>> q_ch_0 = QuantumChar() >>> q_ch_1 = QuantumChar() >>> res_bool = quantum_eq(q_ch_0, q_ch_1) >>> print(q_ch_0.qs) :: QuantumCircuit: -------------- q_ch_0.0: ──■───────────────────────────────────────────────────────── │ q_ch_0.1: ──┼────■──────────────────────────────────────────────────── │ │ q_ch_0.2: ──┼────┼────■─────────────────────────────────────────────── │ │ │ q_ch_0.3: ──┼────┼────┼────■────────────────────────────────────────── │ │ │ │ q_ch_0.4: ──┼────┼────┼────┼────■───────────────────────────────────── │ │ │ │ │ q_ch_1.0: ──┼────┼────┼────┼────┼────■──────────────────────────────── │ │ │ │ │ │ q_ch_1.1: ──┼────┼────┼────┼────┼────┼────■─────────────────────────── │ │ │ │ │ │ │ q_ch_1.2: ──┼────┼────┼────┼────┼────┼────┼────■────────────────────── │ │ │ │ │ │ │ │ q_ch_1.3: ──┼────┼────┼────┼────┼────┼────┼────┼────■───────────────── │ │ │ │ │ │ │ │ │ q_ch_1.4: ──┼────┼────┼────┼────┼────┼────┼────┼────┼────■──────────── ┌─┴─┐ │ │ │ │ ┌─┴─┐ │ │ │ │ ┌───┐ temp_qv.0: ┤ X ├──┼────┼────┼────┼──┤ X ├──┼────┼────┼────┼──┤ X ├──■── └───┘┌─┴─┐ │ │ │ └───┘┌─┴─┐ │ │ │ ├───┤ │ temp_qv.1: ─────┤ X ├──┼────┼────┼───────┤ X ├──┼────┼────┼──┤ X ├──■── └───┘┌─┴─┐ │ │ └───┘┌─┴─┐ │ │ ├───┤ │ temp_qv.2: ──────────┤ X ├──┼────┼────────────┤ X ├──┼────┼──┤ X ├──■── └───┘┌─┴─┐ │ └───┘┌─┴─┐ │ ├───┤ │ temp_qv.3: ───────────────┤ X ├──┼─────────────────┤ X ├──┼──┤ X ├──■── └───┘┌─┴─┐ └───┘┌─┴─┐├───┤ │ temp_qv.4: ────────────────────┤ X ├────────────────────┤ X ├┤ X ├──■── └───┘ └───┘└───┘┌─┴─┐ res.0: ───────────────────────────────────────────────────────┤ X ├ └───┘ Live QuantumVariables: --------------------- QuantumChar q_ch_0 QuantumChar q_ch_1 QuantumVariable temp_qv QuantumBool res We can now construct the conditional environment from this function :: from qrisp import ConditionEnvironment, multi_measurement, h #Create some sample arguments on which to evaluate the condition q_bool_0 = QuantumBool() q_bool_1 = QuantumBool() q_bool_2 = QuantumBool() h(q_bool_0) with ConditionEnvironment(cond_eval_function = quantum_eq, args = [q_bool_0, q_bool_1]): q_bool_2.flip() >>> print(multi_measurement([q_bool_0, q_bool_1, q_bool_2])) {(False, False, True): 0.5, (True, False, False): 0.5} This agrees with our expectation, that ``q_bool_2`` is only ``True`` if the other two agree. **The quantum_condition decorator** Creating quantum conditions like this seems a bit unwieldy. For a more convenient solution, we provide the ``quantum_condition`` decorator. This decorator can be applied to a function returning a :ref:`QuantumBool`, which is then returning the corresponding ConditionEnvironment instead. To demonstrate, we construct a "less than" condition for QuantumFloats :: from qrisp import quantum_condition, cx @quantum_condition def less_than(qf_0, qf_1): temp_qf = qf_0 - qf_1 res = QuantumBool() cx(temp_qf.sign(), res) return res qf_0 = QuantumFloat(3) qf_1 = qf_0.duplicate() qf_0[:] = 2 h(qf_1[:2]) res_q_bool = QuantumBool() with less_than(qf_0, qf_1): res_q_bool.flip() >>> print(multi_measurement([qf_0, qf_1, res_q_bool])) {(2, 0, False): 0.25, (2, 1, False): 0.25, (2, 2, False): 0.25, (2, 3, True): 0.25} **Quantum-Loops** An interesting application of conditional environments is the ``qRange`` iterator. Using this construct, we can mimic a loop as we are used from classical computing, where the end of the loop is determined by a quantum state: :: from qrisp import QuantumFloat, qRange, h n = QuantumFloat(3) qf = QuantumFloat(5) n[:] = 4 h(n[0]) n_results = n.get_measurement() for i in qRange(n): qf += i >>> print(qf) {10: 0.5, 15: 0.5} This script calculates the sum of all integers up to a certain threshold. The threshold (n) is a :ref:`QuantumFloat` in superposition, implying the result of the sum is also in a superposition. The expected results can be quickly determined by using Gauß's formula: .. math:: \sum_{i = 0}^n i = \frac{n(n+1)}{2} >>> print("Excpected outcomes:", [n*(n+1)/2 for n in n_results.keys()]) Excpected outcomes: [10.0, 15.0] """# Constructor of the classdef__init__(self,cond_eval_function,args,kwargs={}):# The function which evaluates the condition - should return a QuantumBooldefsave_cond_eval(*args,**kwargs):withfast_append(0):res=cond_eval_function(*args,**kwargs)returnresself.cond_eval_function=save_cond_eval# Save the arguments on which the function should be evaluatedself.args=args# Save the keyword argumentsself.kwargs=kwargs# Note the QuantumSession of the arguments of the argumentsself.arg_qs=merge(args)self.manual_allocation_management=True# Method to enter the environmentdef__enter__(self):fromqrisp.qtypes.quantum_boolimportQuantumBool# For more information on why this attribute is neccessary check the comment# on the line containing subcondition_truth_values = []self.sub_condition_envs=[]self.qbool=QuantumBool(name="cond_env*",qs=self.arg_qs)self.condition_truth_value=self.qbool[0]super().__enter__()merge(self.env_qs,self.arg_qs)returnself.qbooldef__exit__(self,exception_type,exception_value,traceback):fromqrisp.environmentsimportControlEnvironment,InversionEnvironment,ConjugationEnvironment# We determine the parent condition environmentself.parent_cond_env=NoneQuantumEnvironment.__exit__(self,exception_type,exception_value,traceback)forenvinself.env_qs.env_stack[::-1]:ifisinstance(env,(ConditionEnvironment,ControlEnvironment)):self.parent_cond_env=envbreakifnotisinstance(env,(InversionEnvironment,ConjugationEnvironment)):ifnottype(env)==QuantumEnvironment:break# Compile methoddefcompile(self):fromqrisp.qtypes.quantum_boolimportQuantumBoolfromqrisp.environments.control_environmentimportControlEnvironment,convert_to_custom_control# Create the quantum variable where the condition truth value should be saved# Incase we have a parent environment we create two qubits because# we use the second qubit to compute the toffoli of this one and the parent# environments truth value in order to not have the environment operations# controlled on two qubitsiflen(self.env_data)==0:self.qbool.delete()else:# The first step we have to perform is calculating the truth value of# this environments quantum condition. For this we differentiate between# the case that this condition is embedded in another condition or notifself.parent_cond_envisnotNone:# In the parent case we also need to make sure that the code is executed# if the parent environment is executed. For this a possible approach# would be to control the content on both, the parent and# the chield truth value. However, for each nesting level the gate count# to generate the controlled-controlled-controlled... version# of the gates inside the environment increases exponentially.# Because of this we compute the toffoli of the parent and# child truth value and control the environment gates on this qubit.cond_eval_bool=self.cond_eval_function(*self.args,**self.kwargs)ifnotisinstance(cond_eval_bool,QuantumBool):raiseException("Tried to compile QuantumCondition environment with""a condition evaluation function not returning a QuantumBool")# Create and execute phase tolerant toffoli gatetoffoli_qb_list=[self.parent_cond_env.condition_truth_value,cond_eval_bool[0],]fromqrispimportmcxmcx(toffoli_qb_list,self.condition_truth_value,method="gray_pt")else:# Without any parent environment we can simply synhesize the# truth value of the quantum condition into it's qubitredirect_qfunction(self.cond_eval_function)(*self.args,target=self.qbool,**self.kwargs)ifisinstance(self.env_qs.data[-1],QuantumEnvironment):env=self.env_qs.data.pop(-1)env.compile()cond_eval_bool=self.qboolfromqrispimportrecursive_qv_searchperm_lock(recursive_qv_search(self.args))unlock(self.condition_truth_value)inversion_tracker=1# This list will contain the qubits holding the truth values of# conditional/control environments within this environment. The instruction# from the subcondition environments do not need to be controlled,# since their compile method compiles their condition truth value based# on the truth value of the parent environment.subcondition_truth_values=[env.condition_truth_valueforenvinself.sub_condition_envs]# Now we need to recover the instructions from the data list and# perform their controlled version on the condition_truth_value qubitwhileself.env_data:instruction=self.env_data.pop(0)# If the instruction == conditional environment, compile the environmentifisinstance(instruction,(ControlEnvironment,ConditionEnvironment)):instruction.compile()subcondition_truth_values=[env.condition_truth_valueforenvinself.sub_condition_envs]continue# If the instruction == general environment, compile the instruction and# add the compilation result to the list of instructions that need to be# conditionally executedelifissubclass(instruction.__class__,QuantumEnvironment):temp_data_list=list(self.env_qs.data)self.env_qs.clear_data()instruction.compile()self.env_data=list(self.env_qs.data)+self.env_dataself.env_qs.clear_data()self.env_qs.data.extend(temp_data_list)subcondition_truth_values=[env.condition_truth_valueforenvinself.sub_condition_envs]continueifinstruction.op.namein["qb_alloc","qb_dealloc"]:self.env_qs.append(instruction)continueifset(instruction.qubits).intersection(subcondition_truth_values):self.env_qs.append(instruction)continue# Support for inversion of a condition without opening a new environmentifset(instruction.qubits).issubset([self.condition_truth_value]):ifinstruction.op.name=="x":inversion_tracker*=-1perm_unlock(self.condition_truth_value)x(self.condition_truth_value)perm_lock(self.condition_truth_value)elifinstruction.op.name=="p":p(instruction.op.params[0],self.condition_truth_value)elifinstruction.op.name=="rz":rz(instruction.op.params[0],self.condition_truth_value)elifinstruction.op.name=="z":z(self.condition_truth_value)else:raiseException("Tried to perform invalid operations""on condition truth value (allowed are x, p, z, rz)")continueifself.condition_truth_valueininstruction.qubits:self.env_qs.append(convert_to_custom_control(instruction,self.condition_truth_value))continueelse:# Create controlled instructioninstruction.op=instruction.op.control(num_ctrl_qubits=1)# Add condition truth value qubit to the instruction qubit listinstruction.qubits=[self.condition_truth_value]+list(instruction.qubits)# Append instructionself.env_qs.append(instruction)unlock(self.condition_truth_value)perm_unlock(self.condition_truth_value)ifinversion_tracker==-1:x(self.condition_truth_value)perm_unlock(recursive_qv_search(self.args))# Uncompute truth values# If we had a parent environment, we first uncompute the# "actual truth value", i.e. the mcx of the parent and# this environments truth valueifself.parent_cond_envisnotNone:self.parent_cond_env.sub_condition_envs.extend(self.sub_condition_envs+[self])mcx(toffoli_qb_list,self.qbool,method="gray_pt_inv")self.qbool.delete()# We now uncompute the environments' truth value# For this we can use the uncompute method, which will however not# recompute any intermediate values, therefore blocking alot of qubits# during execution. Especially in nested environments this can quickly# become a problem, because the blocked ancillae can not be reused# for further condition evaluations.# For the condition environment examples we saw an increase from 36 to 44# qubits without recomputation while only lowering the depth by about 25%# There might be cases where recomputation based uncomputation# is not worth it but for now, we leave itrecompute=True# if not recompute:# try:# cond_eval_bool.uncompute()# except:# recompute = Trueifrecompute:withinvert():redirected_qfunction=redirect_qfunction(self.cond_eval_function)redirected_qfunction(*self.args,target=cond_eval_bool,**self.kwargs)ifisinstance(self.env_qs.data[-1],QuantumEnvironment):env=self.env_qs.data.pop(-1)env.compile()cond_eval_bool.delete()
# This decorator allows to have conditional evaluations to return condition environments# when called after a "with" statement but QuantumBools otherwise.# from qrisp import QuantumFloat# a = QuantumFloat(2)# b = QuantumFloat(2)# temp = (a == b) # this is a QuantumBool# with temp: # QuantumBools have an enter method,# but they use the less efficient control environment# pass# with a == b: # This is a ConditionEnvironment entered# pass# We do this mainly for performance reasons. If a QuantumBool is returned,# it can also be entered, but it uses the less efficient (almost a factor 2)# control Environment.# The detection is based on the inspect module.# This implies that the detection only works if the with statements is exactly# two levels above the cond_eval_function call.# That means, a class like QuantumFloat can call __eq__ and then the result# of this decorator in order for this to workdefadaptive_condition(cond_eval_function):defnew_cond_eval_function(*args,**kwargs):fromqrispimportauto_uncomputecalling_line=find_calling_line(2)uncomputed_function=auto_uncompute(cond_eval_function)ifcalling_line.split(" ")[0]=="with"and"&"notincalling_lineand"|"notincalling_lineand"~"notincalling_line:returnquantum_condition(uncomputed_function)(*args,**kwargs)else:returnuncomputed_function(*args,**kwargs)returnnew_cond_eval_function@adaptive_conditiondefq_eq(input_0,input_1,invert=False):fromqrispimportmcx,cx,conjugate,QuantumBoolres=QuantumBool(name="eq_cond*",qs=input_0[0].qs())ifisinstance(input_1,QuantumVariable):ifinput_0.size!=input_1.size:raiseException("Tried to evaluate equality conditional""for QuantumVariables of differing size")defmulti_cx(input_0,input_1):foriinrange(len(input_0)):cx(input_0[i],input_1[i])withconjugate(multi_cx)(input_0,input_1):mcx(input_1,res,ctrl_state=0)else:label_int=input_0.encoder(input_1)mcx(input_0,res,ctrl_state=label_int)ifinvert:res.flip()returnres
Get in touch!
If you are interested in Qrisp or high-level quantum algorithm research in general connect with us on our
Slack workspace.