Source code for qrisp.algorithms.quantum_counting

"""
\********************************************************************************
* Copyright (c) 2023 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************/
"""

import numpy as np

from qrisp.core import h
from qrisp.alg_primitives import QPE

[docs] def quantum_counting(qv, oracle, precision): """ This algorithm estimates the amount of solutions for a given Grover oracle. Parameters ---------- qv : QuantumVariable The QuantumVariable on which to evaluate. oracle : function The oracle function. precision : int The precision to perform the quantum phase estimation with. Returns ------- M : float An estimate of the amount of solutions. Examples -------- We create an oracle, which performs a simple phase flip on the last qubit. :: from qrisp import quantum_counting, z, QuantumVariable def oracle(qv): z(qv[-1]) We expect half of the state-space of the input to be a solution. For 3 qubits, the state space is $2^3 = 8$ dimensional. >>> quantum_counting(QuantumVariable(3), oracle, 3) 3.999999999999999 For 4 qubits, the state space is $2^4 = 16$ dimensional. >>> quantum_counting(QuantumVariable(4), oracle, 3) 7.999999999999998 """ from qrisp import gate_wrap from qrisp.grover import diffuser @gate_wrap def grover_operator(qv): oracle(qv) diffuser(qv) h(qv) res = QPE(qv, grover_operator, precision=precision) mes_res = res.get_measurement() theta = min(list(mes_res.keys())[:1]) * 2 * np.pi N = 2**qv.size M = N * np.sin(theta / 2) ** 2 return M