Source code for qrisp.alg_primitives.state_preparation.prepare_func

"""
********************************************************************************
* Copyright (c) 2025 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************
"""

import numpy as np

from jax.errors import TracerArrayConversionError

from qrisp.alg_primitives.state_preparation.qswitch_state_preparation import prepare_qswitch
from qrisp.alg_primitives.state_preparation.qiskit_state_preparation import prepare_qiskit

[docs] def prepare(qv, target_array, reversed=False, method = "auto"): r""" This method performs quantum state preparation. Given a vector $b=(b_0,\dotsc,b_{N-1})$, the function acts as .. math:: \ket{0} \rightarrow \sum_{i=0}^{N-1}b_i\ket{i} Parameters ---------- qv : QuantumVariable The quantum variable on which to apply state preparation. target_array : numpy.ndarray The vector $b$. reversed : boolean If set to ``True``, the endianness is reversed. The default is ``False``. method : str, optional String to specify the compilation method. Available are ``qiskit``, ``qswitch`` and ``auto``. ``qiskit`` is more gate-efficient but ``qswitch`` can also process dynamic arrays. The default is ``auto``. Examples -------- We create a :ref:`QuantumFloat` and prepare the state $\sum_{i=0}^3b_i\ket{i}$ for $b=(0,1,2,3)$. :: b = np.array([0,1,2,3]) qf = QuantumFloat(2) prepare(qf, b) res_dict = qf.get_measurement() for k, v in res_dict.items(): res_dict[k] = v**0.5 for k, v in res_dict.items(): res_dict[k] = v/res_dict[1.0] print(res_dict) # Yields: {3: 2.9999766670425863, 2: 1.999965000393743, 1: 1.0} """ from qrisp.jasp import check_for_tracing_mode from qrisp.misc import check_if_fresh tracing = int(check_for_tracing_mode()) if not tracing: expected = 1 << qv.size if target_array.size != expected: raise ValueError( f"Statevector length must be {expected} for {qv.size} qubits, " f"got {target_array.size}." ) norm = np.linalg.norm(np.asarray(target_array)) if np.isclose(norm, 0.0): raise ValueError("The provided statevector has zero norm.") #if not check_if_fresh(qv.reg, qv.qs): # raise ValueError( # "Tried to initialize qubits which are not fresh anymore." # ) target_array = np.asarray(target_array) / norm if method == "auto": try: target_array = np.array(target_array) method = "qiskit" except TracerArrayConversionError: method = "qswitch" if method == "qiskit": prepare_qiskit(qv, target_array, reversed) elif method == "qswitch": if not reversed: raise Exception("Reversed state preparation is currently not available for method qswitch") prepare_qswitch(qv, target_array) else: raise ValueError("method must be 'auto', 'qiskit', or 'qswitch'")