Source code for qrisp.alg_primitives.qae

"""
\********************************************************************************
* Copyright (c) 2023 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************/
"""

from qrisp.alg_primitives.qpe import QPE
from qrisp.alg_primitives.amplitude_amplification import amplitude_amplification

[docs] def QAE(args, state_function, oracle_function, kwargs_oracle={}, precision=None, target=None): r""" This method implements the canonical quantum amplitude estimation (QAE) algorithm by `Brassard et al. <https://arxiv.org/abs/quant-ph/0005055>`_. The problem of quantum amplitude estimation is described as follows: * Given a unitary operator :math:`\mathcal{A}`, let :math:`\ket{\Psi}=\mathcal{A}\ket{0}`. * Write :math:`\ket{\Psi}=\ket{\Psi_1}+\ket{\Psi_0}` as a superposition of the orthogonal good and bad components of :math:`\ket{\Psi}`. * Find an estimate for :math:`a=\langle\Psi_1|\Psi_1\rangle`, the probability that a measurement of $\ket{\Psi}$ yields a good state. Parameters ---------- args : QuantumVariable or list[QuantumVariable] The (list of) QuantumVariables which represent the state, the quantum amplitude estimation is performed on. state_function : function A Python function preparing the state :math:`\ket{\Psi}`. This function will receive the variables in the list ``args`` as arguments in the course of this algorithm. oracle_function : function A Python function tagging the good state :math:`\ket{\Psi_1}`. This function will receive the variables in the list ``args`` as arguments in the course of this algorithm. kwargs_oracle : dict, optional A dictionary containing keyword arguments for the oracle. The default is {}. precision : int, optional The precision of the estimation. The default is None. target : QuantumFloat, optional A target QuantumFloat to perform the estimation into. The default is None. If given neither a precision nor a target, an Exception will be raised. Returns ------- res : QuantumFloat A QuantumFloat encoding the angle :math:`\theta` as a fraction of :math:`\pi`, such that :math:`\tilde{a}=\sin^2(\theta)` is an estimate for :math:`a`. More precisely, we have :math:`\theta=\pi\frac{y}{M}` for :math:`y\in\{0,\dotsc,M-1\}` and :math:`M=2^{\text{precision}}`. After measurement, the estimate :math:`\tilde{a}=\sin^2(\theta)` satisfies .. math:: |a-\tilde{a}|\leq\frac{2\pi}{M}+\frac{\pi^2}{M^2} with probability of at least :math:`8/\pi^2`. Examples -------- We define a function that prepares the state :math:`\ket{\Psi}=\cos(\frac{\pi}{8})\ket{0}+\sin(\frac{\pi}{8})\ket{1}` and an oracle that tags the good state :math:`\ket{1}`. In this case, we have :math:`a=\sin^2(\frac{\pi}{8})`. :: from qrisp import z, ry, QuantumBool, QAE import numpy as np def state_function(qb): ry(np.pi/4,qb) def oracle_function(qb): z(qb) qb = QuantumBool() res = QAE([qb], state_function, oracle_function, precision=3) >>> res.get_measurement() {0.125: 0.5, 0.875: 0.5} That is, after measurement we find $\theta=\frac{\pi}{8}$ or $\theta=\frac{7\pi}{8}$ with probability $\frac12$, respectively. Therefore, we obtain the estimate $\tilde{a}=\sin^2(\frac{\pi}{8})$ or $\tilde{a}=\sin^2(\frac{7\pi}{8})$. In this case, both results coincide with the exact value $a$. **Numerical integration** Here, we demonstarate how to use QAE for numerical integration. Consider a continuous function $f\colon[0,1]\rightarrow[0,1]$. We wish to evaluate .. math:: A=\int_0^1f(x)\mathrm dx. For this, we set up the corresponding ``state_function`` acting on the ``input_list``: :: from qrisp import QuantumFloat, QuantumBool, control, z, h, ry, QAE import numpy as np n = 6 inp = QuantumFloat(n,-n) tar = QuantumBool() input_list = [inp, tar] Here, $N=2^n$ is the number of sampling points the function $f$ is evaluated on. The ``state_function`` acts as .. math:: \ket{0}\ket{0}\rightarrow\frac{1}{\sqrt{N}}\sum\limits_{x=0}^{N-1}\ket{x}\left(\sqrt{1-f(x/N)}\ket{0}+\sqrt{f(x/N)}\ket{1}\right). Then the probability of measuring $1$ in the target state ``tar`` is .. math:: p(1)=\frac{1}{N}\sum\limits_{x=0}^{N-1}f(x/N), which acts as an approximation for the value of the integral $A$. The ``oracle_function``, therefore, tags the $\ket{1}$ state of the target state: :: def oracle_function(inp, tar): z(tar) For example, if $f(x)=\sin^2(x)$ the ``state_function`` can be implemented as follows: :: def state_function(inp, tar): h(inp) N = 2**inp.size for k in range(inp.size): with control(inp[k]): ry(2**(k+1)/N,tar) Finally, we apply QAE and obtain an estimate $a$ for the value of the integral $A=0.27268$. :: prec = 6 res = QAE(input_list, state_function, oracle_function, precision=prec) meas_res = res.get_measurement() theta = np.pi*max(meas_res, key=meas_res.get) a = np.sin(theta)**2 >>> a 0.26430 """ state_function(*args) res = QPE(args, amplitude_amplification, precision, target, iter_spec=True, kwargs={'state_function':state_function, 'oracle_function':oracle_function, 'kwargs_oracle':kwargs_oracle}) return res