Source code for qrisp.alg_primitives.prepare

"""
\********************************************************************************
* Copyright (c) 2025 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************/
"""

from qrisp import QuantumFloat
import numpy as np

[docs] def prepare(qv, target_array, reversed=False): r""" This method performs quantum state preparation. Given a vector $b=(b_0,\dotsc,b_{N-1})$, the function acts as .. math:: \ket{0} \rightarrow \sum_{i=0}^{N-1}b_i\ket{i} Parameters ---------- qv : QuantumVariable The quantum variable on which to apply state preparation. target_array : numpy.ndarray The vector $b$. reversed : boolean If set to ``True``, the endianness is reversed. The default is ``False``. Examples -------- We create a :ref:`QuantumFloat` and prepare the state $\sum_{i=0}^3b_i\ket{i}$ for $b=(0,1,2,3)$. :: b = np.array([0,1,2,3]) qf = QuantumFloat(2) prepare(qf, b) res_dict = qf.get_measurement() for k, v in res_dict.items(): res_dict[k] = v**0.5 for k, v in res_dict.items(): res_dict[k] = v/res_dict[1.0] print(res_dict) # Yields: {3: 2.9999766670425863, 2: 1.999965000393743, 1: 1.0} """ from qiskit.circuit.library.data_preparation.state_preparation import StatePreparation n = len(target_array) m = int(np.ceil(np.log2(n))) # Fill target_array with zeros if not (n & (1 << m)): target_array = np.concatenate((target_array, np.zeros((1 << m) - n))) target_array = target_array / np.vdot(target_array, target_array) ** 0.5 qiskit_qc = StatePreparation(target_array).definition from qrisp import QuantumCircuit init_qc = QuantumCircuit.from_qiskit(qiskit_qc) # Find global phase correction from qrisp.simulator import statevector_sim init_qc.qubits.reverse() sim_array = statevector_sim(init_qc) init_qc.qubits.reverse() arg_max = np.argmax(np.abs(sim_array)) gphase_dif = (np.angle(target_array[arg_max] / sim_array[arg_max])) % (2 * np.pi) init_qc.gphase(gphase_dif, 0) init_gate = init_qc.to_gate() init_gate.name = "state_init" if reversed: qv.qs.append(init_gate, [qv[m-1-i] for i in range(m)]) else: qv.qs.append(init_gate, [qv[i] for i in range(m)])