"""\********************************************************************************* Copyright (c) 2025 the Qrisp authors** This program and the accompanying materials are made available under the* terms of the Eclipse Public License 2.0 which is available at* http://www.eclipse.org/legal/epl-2.0.** This Source Code may also be made available under the following Secondary* Licenses when the conditions for such availability set forth in the Eclipse* Public License, v. 2.0 are satisfied: GNU General Public License, version 2* with the GNU Classpath Exception which is* available at https://www.gnu.org/software/classpath/license.html.** SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0********************************************************************************/"""fromqrispimportQuantumFloatimportnumpyasnp
[docs]defprepare(qv,target_array,reversed=False):r""" This method performs quantum state preparation. Given a vector $b=(b_0,\dotsc,b_{N-1})$, the function acts as .. math:: \ket{0} \rightarrow \sum_{i=0}^{N-1}b_i\ket{i} Parameters ---------- qv : QuantumVariable The quantum variable on which to apply state preparation. target_array : numpy.ndarray The vector $b$. reversed : boolean If set to ``True``, the endianness is reversed. The default is ``False``. Examples -------- We create a :ref:`QuantumFloat` and prepare the state $\sum_{i=0}^3b_i\ket{i}$ for $b=(0,1,2,3)$. :: b = np.array([0,1,2,3]) qf = QuantumFloat(2) prepare(qf, b) res_dict = qf.get_measurement() for k, v in res_dict.items(): res_dict[k] = v**0.5 for k, v in res_dict.items(): res_dict[k] = v/res_dict[1.0] print(res_dict) # Yields: {3: 2.9999766670425863, 2: 1.999965000393743, 1: 1.0} """fromqiskit.circuit.library.data_preparation.state_preparationimportStatePreparationn=len(target_array)m=int(np.ceil(np.log2(n)))# Fill target_array with zerosifnot(n&(1<<m)):target_array=np.concatenate((target_array,np.zeros((1<<m)-n)))target_array=target_array/np.vdot(target_array,target_array)**0.5qiskit_qc=StatePreparation(target_array).definitionfromqrispimportQuantumCircuitinit_qc=QuantumCircuit.from_qiskit(qiskit_qc)# Find global phase correctionfromqrisp.simulatorimportstatevector_siminit_qc.qubits.reverse()sim_array=statevector_sim(init_qc)init_qc.qubits.reverse()arg_max=np.argmax(np.abs(sim_array))gphase_dif=(np.angle(target_array[arg_max]/sim_array[arg_max]))%(2*np.pi)init_qc.gphase(gphase_dif,0)init_gate=init_qc.to_gate()init_gate.name="state_init"ifreversed:qv.qs.append(init_gate,[qv[m-1-i]foriinrange(m)])else:qv.qs.append(init_gate,[qv[i]foriinrange(m)])
Get in touch!
If you are interested in Qrisp or high-level quantum algorithm research in general connect with us on our
Slack workspace.