Source code for qrisp.alg_primitives.iterative_qae
"""\********************************************************************************* Copyright (c) 2024 the Qrisp authors** This program and the accompanying materials are made available under the* terms of the Eclipse Public License 2.0 which is available at* http://www.eclipse.org/legal/epl-2.0.** This Source Code may also be made available under the following Secondary* Licenses when the conditions for such availability set forth in the Eclipse* Public License, v. 2.0 are satisfied: GNU General Public License, version 2* with the GNU Classpath Exception which is* available at https://www.gnu.org/software/classpath/license.html.** SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0********************************************************************************/"""fromqrispimportzfromqrisp.alg_primitives.qaeimportamplitude_amplificationimportnumpyasnp
[docs]defIQAE(qargs,state_function,eps,alpha,mes_kwargs={}):r""" Accelerated Quantum Amplitude Estimation (IQAE). This function performs :ref:`QAE <QAE>` with a fraction of the quantum resources of the well-known `QAE algorithm <https://arxiv.org/abs/quant-ph/0005055>`_. See `Accelerated Quantum Amplitude Estimation without QFT <https://arxiv.org/abs/2407.16795>`_. The problem of iterative quantum amplitude estimation is described as follows: * Given a unitary operator :math:`\mathcal{A}`, let :math:`\ket{\Psi}=\mathcal{A}\ket{0}\ket{\text{False}}`. * Write :math:`\ket{\Psi}=\sqrt{a}\ket{\Psi_1}\ket{\text{True}}+\sqrt{1-a}\ket{\Psi_0}\ket{\text{False}}` as a superposition of the orthogonal good and bad components of :math:`\ket{\Psi}`. * Find an estimate for $a$, the probability that a measurement of $\ket{\Psi}$ yields a good state. Parameters ---------- qargs : list[QuantumVariable] The list of QuantumVariables which represent the state, the quantum amplitude estimation is performed on. The last variable in the list must be of type :ref:`QuantumBool`. state_function : function A Python function preparing the state :math:`\ket{\Psi}`. This function will receive the variables in the list ``qargs`` as arguments in the course of this algorithm. eps : float Accuracy $\epsilon>0$ of the algorithm. alpha : float Confidence level $\alpha\in (0,1)$ of the algorithm. mes_kwargs : dict, optional The keyword arguments for the measurement function. Default is an empty dictionary. Returns ------- a : float An estimate $\hat{a}$ of $a$ such that .. math:: \mathbb P\{|\hat{a}-a|<\epsilon\}\geq 1-\alpha Examples -------- We show the same **Numerical integration** example which can also be found in the :ref:`QAE documentation <QAE>`. We wish to evaluate .. math:: A=\int_0^1f(x)\mathrm dx. For this, we set up the corresponding ``state_function`` acting on the variables in ``input_list``: :: from qrisp import QuantumFloat, QuantumBool, control, z, h, ry, IQAE import numpy as np n = 6 inp = QuantumFloat(n,-n) tar = QuantumBool() input_list = [inp, tar] For example, if $f(x)=\sin^2(x)$, the ``state_function`` can be implemented as follows: :: def state_function(inp, tar): h(inp) N = 2**inp.size for k in range(inp.size): with control(inp[k]): ry(2**(k+1)/N,tar) Finally, we apply IQAE and obtain an estimate $a$ for the value of the integral $A=0.27268$. :: a = IQAE(input_list, state_function, eps=0.01, alpha=0.01) >>> a 0.26782038552705856 """# The oracle tagging the good statesdeforacle_function(*args):tar=args[-1]z(tar)E=1/2*pow(np.sin(np.pi*3/14),2)-1/2*pow(np.sin(np.pi*1/6),2)F=1/2*np.arcsin(np.sqrt(2*E))C=4/(6*F+np.pi)break_cond=2*eps+1#theta_b = 0#theta_sh = 1K_i=1m_i=0index_tot=0whilebreak_cond>2*eps:index_tot+=1alp_i=C*alpha*eps*K_iN_i=int(np.ceil(1/(2*pow(E,2))*np.log(2/alp_i)))# Perform quantum stepqargs_dupl=[qarg.duplicate()forqarginqargs]A_i=quant_step(int((K_i-1)/2),N_i,qargs_dupl,state_function,oracle_function,mes_kwargs)forqarginqargs_dupl:qarg.delete()# Compute new thetastheta_b,theta_sh=compute_thetas(m_i,K_i,A_i,E)# Compute new LiL_new,m_new=compute_Li(m_i,K_i,theta_b,theta_sh)m_i=m_newK_i=L_new*K_ibreak_cond=abs(theta_b-theta_sh)final_res=np.sin((theta_b+theta_sh)/2)**2returnfinal_res
defquant_step(k,N,qargs,state_function,oracle_function,mes_kwargs):""" Performs the quantum step, i.e., Quantum Amplitude Amplification, in accordance to `Accelerated Quantum Amplitude Estimation without QFT <https://arxiv.org/abs/2407.16795>`_ Parameters ---------- k : int The amount of amplification steps, i.e., the power of :math:`\mathcal{Q}` in amplitude amplification. N : int The amount of shots, i.e., the amount of times the last qubit is measured after the amplitude amplification steps. state_function : function A Python function preparing the state :math:`\ket{\Psi}`. This function will receive the variables in the list ``args`` as arguments in the course of this algorithm. oracle_function : function A Python function tagging the good state :math:`\ket{\Psi_1}`. This function will receive the variables in the list ``args`` as arguments in the course of this algorithm. mes_kwargs : dict, optional The keyword arguments for the measurement function. Default is an empty dictionary. """ifk==0:state_function(*qargs)else:state_function(*qargs)amplitude_amplification(qargs,state_function,oracle_function,iter=k)# store result of last qubit # shot-based measurement mes_kwargs["shots"]=Nres_dict=qargs[-1].get_measurement(**mes_kwargs)# case of single dict return, this should not occur but to be safeifTruenotinlist(res_dict.keys()):return0a_i=res_dict[True]returna_idefcompute_thetas(m_i,K_i,A_i,E):""" Helper function to perform statistical evaluation and compute the angles for the next iteration. See `the original paper <https://arxiv.org/abs/2407.16795>`_ , Algorithm 1. Parameters ---------- m_i : Int Used for the computation of the interval of allowed angles. K_i : Int Maximal amount of amplitude amplification steps for the next iteration. A_i : Float Share of ``1``-measurements in amplitude amplification steps E : :math:`\epsilon` limit """b_max=max(A_i-E,0)sh_min=min(A_i+E,1)theta_b_intermed=update_angle(b_max,m_i)theta_b=theta_b_intermed/K_ish_theta_intermed=update_angle(sh_min,m_i)sh_theta=sh_theta_intermed/K_iassertround(pow(np.sin(K_i*theta_b),2),8)==round(b_max,8)assertround(pow(np.sin(K_i*sh_theta),2),8)==round(sh_min,8)returntheta_b,sh_thetadefupdate_angle(old_angle,m_in):""" Subroutine to compute new angles. Parameters ---------- old_angle : float Old angle from last iteration. m_in : int Used for the computation of the interval of allowed angles. """val_intermed1=np.arcsin(np.sqrt(old_angle))-np.pival_intermed2=np.arcsin(-np.sqrt(old_angle))cond_break=Truewhilecond_break:ifnot(m_in*np.pi/2<=val_intermed1<=(m_in+1)*np.pi/2):val_intermed1+=np.pielse:final_intermed=val_intermed1cond_break=Falsebreakifnot(m_in*np.pi/2<=val_intermed2<=(m_in+1)*np.pi/2):val_intermed2+=np.pielse:final_intermed=val_intermed2cond_break=Falsebreakreturnfinal_intermeddefcompute_Li(m_i,K_i,theta_b,theta_sh):""" Helper function to perform statistical evaluation and compute further values for the next iteration. See `the original paper <https://arxiv.org/abs/2407.16795>`_ , Algorithm 1. Parameters ---------- m_i : int Used for the computation of the interval of allowed angles. K_i : int Maximal amount of amplitude amplification steps for the next iteration. theta_b : float Lower bound for angle from last iteration. theta_b : float Upper bound for angle from last iteration. """Li_list=(3,5,7)# create the Li-valuesforLiinLi_list:# create the possible M_new valsm_new_list=range(Li*m_i,Li*m_i+Li)first_val=Li*K_i*theta_bsec_val=Li*K_i*theta_shform_newinm_new_list:# check the conditionsifm_new*np.pi/2<=first_val<=(m_new+1)*np.pi/2:ifm_new*np.pi/2<=sec_val<=(m_new+1)*np.pi/2:#assert m_new*np.pi/2 <= Li *K_i * theta_b <= (m_new+1)*np.pi/2#assert m_new*np.pi/2 <= Li *K_i * theta_sh <= (m_new+1)*np.pi/2elem1=Lielem2=m_newreturnelem1,elem2
Get in touch!
If you are interested in Qrisp or high-level quantum algorithm research in general connect with us on our
Slack workspace.