Source code for qrisp.alg_primitives.iterable_processing
"""\********************************************************************************* Copyright (c) 2025 the Qrisp authors** This program and the accompanying materials are made available under the* terms of the Eclipse Public License 2.0 which is available at* http://www.eclipse.org/legal/epl-2.0.** This Source Code may also be made available under the following Secondary* Licenses when the conditions for such availability set forth in the Eclipse* Public License, v. 2.0 are satisfied: GNU General Public License, version 2* with the GNU Classpath Exception which is* available at https://www.gnu.org/software/classpath/license.html.** SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0********************************************************************************/"""importnumpyasnpfromqrisp.coreimportcx,swap
[docs]defdemux(input,ctrl_qv,output=None,ctrl_method=None,permit_mismatching_size=False,parallelize_qc=False):""" This functions allows moving an input value into an iterable output, where the position is specified by a ``QuantumFloat``. Demux is short for demultiplexer and is a standard component in `classical electrical circuitry <https://en.wikipedia.org/wiki/Multiplexer>`_. Demux can either move qubit states into a QuantumVariable or ``QuantumVariables`` into ``QuantumArrays``. This function can also be used to "in-place demux" the 0-th entry of an iterable to the position specified by ``ctrl_qv``. For more information on this, check the second example. Parameters ---------- input : Qubit or QuantumVariable The input value that is supposed to be moved. ctrl_qv : QuantumFloat The QuantumFloat specifying to which output the input should be moved. output : QuantumVariable or QuantumArray, optional The output object, where the input should end up. By default, a new object (QuantumVariable or QuantumArray) is created. Note that when this parameter is given, it is guaranteed, that the 0-th entry will be moved to the desired position, the other entries can also be permuted away from their original position. ctrl_method : string, optional The ``ctrl_method`` string passed to the :ref:`control environment <ControlEnvironment>` to generate controlled swaps. permit_mismatching_size : bool, optional If set to False, an exception will be raised, if the state-space dimension of `ctrl_qv`` is differing from the amount of outputs. The default is False. parallelize_qc : bool, optional If set to True, this option reduces (de)allocates additional qubits to reduce the depth. The default is False. Raises ------ Exception Tried to demux with mismatchingly sized control input. Returns ------- output : QuantumVariable or QuantumArray The output object with the input signal placed at the index specified by ``ctrl_qv``. Examples -------- We create a ``QuantumBool`` and demux it into a ``QuantumArray`` :: from qrisp import * qb = QuantumBool() qb.flip() index = QuantumFloat(2) h(index[1]) res_array = demux(qb, index) >>> print(multi_measurement([index, res_array])) {(0, OutcomeArray([1., 0., 0., 0.])): 0.5, (2, OutcomeArray([0., 0., 1., 0.])): 0.5} Demux can also be used to move the 0-th entry of a ``QuantumArray`` in-place. :: qa = QuantumArray(shape = 4, qtype = qb) qa[0].flip() demux(qa[0], index, qa) >>> print(multi_measurement([index, qa])) {(0, OutcomeArray([1., 0., 0., 0.])): 0.5, (2, OutcomeArray([0., 0., 1., 0.])): 0.5} For low-level manipulations, demux can move information within ``QuantumVariables``. :: qf = QuantumVariable(4) qf[:] = "1000" demux(qf[0], index, qf) >>> print(multi_measurement([index, qf])) {(0, '1000'): 0.5, (2, '0010'): 0.5} """fromqrispimportQuantumArray,QuantumVariable,Qubit,control,swapifoutputisNone:ifisinstance(input,QuantumVariable):output=QuantumArray(input,2**len(ctrl_qv))elifisinstance(input,Qubit):output=QuantumVariable(2**len(ctrl_qv))else:raiseException("Don't know how to handle input type "+str(type(input)))else:ifisinstance(output,QuantumArray):forqvinoutput.flatten()[1:]:ifqv.name==input.name:raiseException("Tried to in-place demux QuantumArray entry,""which is not a 0-th position")elifisinstance(output,QuantumVariable):forqbinoutput.reg[1:]:ifqb.identifier==input.identifier:raiseException("Tried to in-place demux QuantumVariable entry,""which is not a 0-th position")n=int(np.ceil(np.log2(len(output))))N=2**niflen(output)!=2**len(ctrl_qv)andnotpermit_mismatching_size:raiseException("Tried to demux with mismatching sized control input")ifhash(input)!=hash(output[0]):swap(input,output[0])ifnotlen(ctrl_qv):returnoutputiflen(output)>2**(len(ctrl_qv)-1):withcontrol(ctrl_qv[-1],ctrl_method=ctrl_method):swap(output[0],output[N//2])else:demux(output[0],ctrl_qv[:-1],output,ctrl_method=ctrl_method,permit_mismatching_size=permit_mismatching_size,)returnoutputifn>1:ifparallelize_qc:demux_ancilla=QuantumVariable(len(ctrl_qv)-1)cx(ctrl_qv[:-1],demux_ancilla)ctrl_qubits=list(demux_ancilla)else:ctrl_qubits=ctrl_qv[:-1]demux(output[0],ctrl_qubits,#ctrl_qv[:-1],output[:N//2],ctrl_method=ctrl_method,permit_mismatching_size=permit_mismatching_size,parallelize_qc=parallelize_qc)demux(output[N//2],ctrl_qv[:-1],output[N//2:],ctrl_method=ctrl_method,permit_mismatching_size=permit_mismatching_size,parallelize_qc=parallelize_qc)ifparallelize_qc:cx(ctrl_qv[:-1],demux_ancilla)demux_ancilla.delete()returnoutput
[docs]defcyclic_shift(iterable,shift_amount=1):r""" Performs a cyclic shift of the values of an iterable with logarithmic depth. The shifting amount can be specified. Parameters ---------- iterable : list[Qubit] or list[QuantumVariable] or QuantumArray The iterable to be shifted. shift_amount : integer or QuantumFloat, optional The iterable will be shifted by that amount. The default is 1. Examples -------- We create a QuantumArray, initiate a sequence of increments and perform a cyclic shift. >>> from qrisp import QuantumFloat, QuantumArray, cyclic_shift >>> import numpy as np >>> qa = QuantumArray(QuantumFloat(3), 8) >>> qa[:] = np.arange(8) >>> cyclic_shift(qa, shift_amount = 2) >>> print(qa) {OutcomeArray([6, 7, 0, 1, 2, 3, 4, 5]): 1.0} We do something similar to demonstrate the shift by quantum values. For this we initiate a :ref:`QuantumFloat` in the superposition of 0, 1 and -3. >>> shift_amount = QuantumFloat(3, signed = True) >>> shift_amount[:] = {0 : 3**-0.5, 1: 3**-0.5, -3 : 3**-0.5} >>> qa = QuantumArray(QuantumFloat(3), 8) >>> qa[:] = np.arange(8) >>> cyclic_shift(qa, shift_amount) >>> print(qa) {OutcomeArray([0, 1, 2, 3, 4, 5, 6, 7]): 0.3333, OutcomeArray([7, 0, 1, 2, 3, 4, 5, 6]): 0.3333, OutcomeArray([3, 4, 5, 6, 7, 0, 1, 2]): 0.3333} """fromqrispimportQuantumFloat,control,QuantumBool,cxifisinstance(shift_amount,QuantumFloat):ifshift_amount.mshape[0]<0:raiseException("Tried to quantum shift by non-integer QuantumFloat")ifshift_amount.signed:withcontrol(shift_amount.sign()):cyclic_shift(iterable,-2**(shift_amount.mshape[1]))foriinrange(*shift_amount.mshape):withcontrol(shift_amount.significant(i)):cyclic_shift(iterable,2**i)returnN=len(iterable)n=int(np.floor(np.log2(N)))ifN==0ornotshift_amount%N:returnifshift_amount<0:returncyclic_shift(iterable[::-1],-shift_amount)ifshift_amount!=1:perm=np.arange(N)perm=(perm-shift_amount)%(N)permute_iterable(iterable,perm)returnsingular_shift(iterable[:2**n])singular_shift([iterable[0]]+list(iterable[2**n:]),use_saeedi=True)
defsingular_shift(iterable,use_saeedi=False):N=len(iterable)ifNin[0,1]:returnifuse_saeedi:#Strategy from https://arxiv.org/abs/1304.7516#Seems to perform worse when shifting by a quantum float#But better when the shift length is not a power of 2foriinrange(N//2):if(-i)%N==i+1ori+1>=N:continueswap(iterable[-i],iterable[i+1])foriinrange(N//2):if(-i)%N==i+2ori+2>=N:continueswap(iterable[-i],iterable[i+2])else:correction_indices=[]foriinrange(len(iterable)//2):swap_tuple=(2*i,2*i+1)swap(iterable[swap_tuple[0]],iterable[swap_tuple[1]])correction_indices.append(swap_tuple[0])singular_shift([iterable[i]foriincorrection_indices])defto_cycles(perm):pi={i:perm[i]foriinrange(len(perm))}cycles=[]whilepi:elem0=next(iter(pi))# arbitrary starting elementthis_elem=pi[elem0]next_item=pi[this_elem]cycle=[]whileTrue:cycle.append(this_elem)delpi[this_elem]this_elem=next_itemifnext_iteminpi:next_item=pi[next_item]else:breakcycles.append(cycle)returncycles
[docs]defpermute_iterable(iterable,perm):""" Applies an arbitrary permutation to an iterable with logarithmic depth. Parameters ---------- iterable : QuantumArray or List[QuantumVariable] or QuantumVariable or List[Qubit] The iterable to perform the permutation on. perm : List[integer] A list specifying the permutation. Examples -------- We create a QuantumArray containing increments and apply a specified permutation. >>> from qrisp import QuantumFloat, QuantumArray, permute_iterable >>> import numpy as np >>> qa = QuantumArray(QuantumFloat(3), 8) >>> qa[:] = np.arange(8) >>> permute_iterable(qa, perm = [1,0,3,7,5,2,6,4]) >>> print(qa) {OutcomeArray([1, 0, 3, 7, 5, 2, 6, 4]): 1.0} >>> print(qa.qs) :: QuantumCircuit: -------------- qa.0: ────────────X────────────────────── │ qa.1: ──────X─────┼────────────────────── │ │ qa.2: ──────┼──X──┼────────────────────── ┌───┐ │ │ │ qa_1.0: ┤ X ├─┼──┼──X────────────────────── └───┘ │ │ qa_1.1: ──────X──┼───────────────────────── │ qa_1.2: ─────────X───────────────────────── qa_2.0: ───────────────────────────X─────── ┌───┐ │ qa_2.1: ┤ X ├──────────────────────┼──X──── └───┘ │ │ qa_2.2: ───────────────────────────┼──┼──X─ ┌───┐ │ │ │ qa_3.0: ┤ X ├──────────X───────────┼──┼──┼─ ├───┤ │ │ │ │ qa_3.1: ┤ X ├──────────┼──X────────┼──┼──┼─ └───┘ │ │ │ │ │ qa_3.2: ───────────────┼──┼──X─────┼──┼──┼─ │ │ │ │ │ │ qa_4.0: ──────X────────┼──┼──┼─────┼──┼──┼─ │ │ │ │ │ │ │ qa_4.1: ──────┼──X─────┼──┼──┼─────┼──┼──┼─ ┌───┐ │ │ │ │ │ │ │ │ qa_4.2: ┤ X ├─┼──┼──X──┼──┼──┼─────┼──┼──┼─ ├───┤ │ │ │ │ │ │ │ │ │ qa_5.0: ┤ X ├─X──┼──┼──┼──┼──┼──X──X──┼──┼─ └───┘ │ │ │ │ │ │ │ │ qa_5.1: ─────────X──┼──┼──┼──┼──┼──X──X──┼─ ┌───┐ │ │ │ │ │ │ │ qa_5.2: ┤ X ├───────X──┼──┼──┼──┼──┼──X──X─ └───┘ │ │ │ │ │ │ qa_6.0: ───────────────┼──┼──┼──┼──┼──┼──── ┌───┐ │ │ │ │ │ │ qa_6.1: ┤ X ├──────────┼──┼──┼──┼──┼──┼──── ├───┤ │ │ │ │ │ │ qa_6.2: ┤ X ├──────────┼──┼──┼──┼──┼──┼──── ├───┤ │ │ │ │ │ │ qa_7.0: ┤ X ├──────────X──┼──┼──X──┼──┼──── ├───┤ │ │ │ │ qa_7.1: ┤ X ├─────────────X──┼─────X──┼──── ├───┤ │ │ qa_7.2: ┤ X ├────────────────X────────X──── └───┘ Live QuantumVariables: --------------------- QuantumFloat qa QuantumFloat qa_1 QuantumFloat qa_2 QuantumFloat qa_3 QuantumFloat qa_4 QuantumFloat qa_5 QuantumFloat qa_6 QuantumFloat qa_7 """fromsympy.combinatoricsimportPermutationinv_perm=list(Permutation(perm)**-1)cycles=to_cycles(inv_perm)forcincycles:cyclic_shift([iterable[i]foriinc],1)
Get in touch!
If you are interested in Qrisp or high-level quantum algorithm research in general connect with us on our
Slack workspace.