Source code for qrisp.alg_primitives.amplitude_amplification
"""
\********************************************************************************
* Copyright (c) 2023 the Qrisp authors
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License 2.0 which is available at
* http://www.eclipse.org/legal/epl-2.0.
*
* This Source Code may also be made available under the following Secondary
* Licenses when the conditions for such availability set forth in the Eclipse
* Public License, v. 2.0 are satisfied: GNU General Public License, version 2
* with the GNU Classpath Exception which is
* available at https://www.gnu.org/software/classpath/license.html.
*
* SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0
********************************************************************************/
"""
[docs]
def amplitude_amplification(args, state_function, oracle_function, kwargs_oracle={}, iter=1):
r"""
This method performs `quantum amplitude amplification <https://arxiv.org/abs/quant-ph/0005055>`_.
The problem of quantum amplitude amplification is described as follows:
* Given a unitary operator :math:`\mathcal{A}`, let :math:`\ket{\Psi}=\mathcal{A}\ket{0}`.
* Write :math:`\ket{\Psi}=\ket{\Psi_1}+\ket{\Psi_0}` as a superposition of the orthogonal good and bad components of :math:`\ket{\Psi}`.
* Enhance the probability :math:`a=\langle\Psi_1|\Psi_1\rangle` that a measurement of $\ket{\Psi}$ yields a good state.
Let $\theta_a\in [0,\pi/2]$ such that $\sin^2(\theta_a)=a$. Then the amplitude amplification operator $\mathcal Q$ acts as
.. math::
\mathcal Q^j\ket{\Psi}=\frac{1}{\sqrt{a}}\sin((2j+1)\theta_a)\ket{\Psi_1}+\frac{1}{\sqrt{1-a}}\cos((2j+1)\theta_a)\ket{\Psi_0}.
Therefore, after $m$ iterations the probability of measuring a good state is $\sin^2((2m+1)\theta_a)$.
Parameters
----------
args : QuantumVariable or list[QuantumVariable]
The (list of) QuantumVariables which represent the state,
the amplitude amplification is performed on.
state_function : function
A Python function preparing the state $\ket{\Psi}$.
This function will receive the variables in the list ``args`` as arguments in the
course of this algorithm.
oracle_function : function
A Python function tagging the good state $\ket{\Psi_1}$.
This function will receive the variables in the list ``args`` as arguments in the
course of this algorithm.
kwargs_oracle : dict, optional
A dictionary containing keyword arguments for the oracle. The default is {}.
iter : int, optional
The amount of amplitude amplification iterations to perform. The default is 1.
Examples
--------
We define a function that prepares the state :math:`\ket{\Psi}=\cos(\frac{\pi}{16})\ket{0}+\sin(\frac{\pi}{16})\ket{1}`
and an oracle that tags the good state :math:`\ket{1}`. In this case, we have :math:`a=\sin^2(\frac{\pi}{16})\approx 0.19509`.
::
from qrisp import z, ry, QuantumBool, amplitude_amplification
import numpy as np
def state_function(qb):
ry(np.pi/8,qb)
def oracle_function(qb):
z(qb)
qb = QuantumBool()
state_function(qb)
>>> qb.qs.statevector(decimals=5)
0.98079∣False⟩+0.19509∣True⟩
We can enhance the probability of measuring the good state with amplitude amplification:
>>> amplitude_amplification([qb], state_function, oracle_function)
>>> qb.qs.statevector(decimals=5)
0.83147*|False> + 0.55557*|True>
>>> amplitude_amplification([qb], state_function, oracle_function)
>>> qb.qs.statevector(decimals=5)
0.55557*|False> + 0.83147*|True>
>>> amplitude_amplification([qb], state_function, oracle_function)
>>> qb.qs.statevector(decimals=5)
0.19509*|False> + 0.98079*|True>
"""
from qrisp import merge, IterationEnvironment, recursive_qs_search
from qrisp.grover import diffuser
merge(args)
qs = recursive_qs_search(args)[0]
with IterationEnvironment(qs, iter):
oracle_function(*args, **kwargs_oracle)
diffuser(args, state_function=state_function)